This project, supported by the Student Faculty Grant, explores the application of graph neural networks (GNNs)
in physics. We encoded the magnetic configurations of the Ising model as graphs, where nodes represent
spins and edges capture interactions. Using this model, we aimed to predict configurations with minimal
energy. This problem is particularly interesting as it is known to be NP-complete. We experimented with various GNN architectures using
PyTorch and concluded with a report on our results, highlighting the most effective approach.