
Final Project 
 
Pull request: https://github.com/TUM-I5/SWE/pull/12 

How to build/run our project 
Add environments variables 
export NETCDF_LIBRARIES=$(nc-config --libs) 
export NETCDF_INCLUDES=$(nc-config --includedir) 
 
Load necessary modules  
module load cmake 
module load gcc/11.3.0  
module unload openmpi  
module load intel-mpi/2021.9.0  
module load netcdf-hdf5-all/4.7_hdf5-1.10-gcc12-impi 

Initial Profiling 
local machine CPU info: … 
 
Architecture:             x86_64 
  CPU op-mode(s):         32-bit, 64-bit 
  Address sizes:          39 bits physical, 48 bits virtual 
  Byte Order:             Little Endian 
CPU(s):                   20 
  On-line CPU(s) list:    0-19 
Vendor ID:                GenuineIntel 
  Model name:             12th Gen Intel(R) Core(TM) i7-12700H 
    CPU family:           6 
    Model:                154 
    Thread(s) per core:   2 
    Core(s) per socket:   14 
    Socket(s):            1 
    Stepping:             3 
    CPU(s) scaling MHz:   15% 
    CPU max MHz:          4700.0000 
    CPU min MHz:          400.0000 
    BogoMIPS:             5376.00 
 
Profiling on Intel Vtune  
The original code is profiled with Intel Vtune on a local machine with the parameters 
mentioned above. The number of MPI processes is set to 10. The profiling analysis 
is performed in “Hotspots” mode. The number of grids on x and y dimensions are set 

1 



to 1000 each. This profiling is named as the baseline for following analysis. 

 
Figure 1: Baseline profiling result in V-tune with 10 MPI processes. 

 
Figure 2: Rank of hotspots in the original code. 

Callgrind  
Callgrind is a profiling tool in the Valgrind suite that uses instrumentation to analyze program 
performance. It focuses on function calls and execution paths and helps identify critical 
sections of the code.  
 
Sequential case 
This tool was executed only locally on Linux with CPU because it was not possible to load it 
on the remote computation node. 

2 



Below is a call graph of the process `./build/SWE-MPI-Runner -x 500 -y 500` produced by 
the visualization tool Kcachegrind. This code was executed in a serial manner. 

 
Figure 3. Relative Call graph of the SWE project 

 
Figure 4. Table of the functions from the Call graph 

 
The profiling results are not exactly the same because of different processors and 
architectures. However, they provide valuable information about the candidates for 
optimization.  

-​ FWaveSolver 
-​ computeNetUpdates 
-​ computeNetUpdatesWithWaveSpeed 
-​ computeWaveSpeeds 
-​ computeWaveDecomposition 

-​ WavePropagationBlock 
-​ computeNumericalFluxes 
-​ updateUnknows 

​
 

3 



Optimization 1 - resolving load imbalances from 
wetting/drying with openMP 
The function handling wetting and drying is located in 
build/_deps/swe-solvers-src/Source/FWaveSolver.hpp 
The function, determineWetDryState(), determines the state of a single edge between two 
cells of the simulation. From the VTune output in figure 2, we see that this function has a 
CPU time of 6.272s. The whole program has a CPU time of 159s, so this function constitutes 
4% of the total cpu time. 
 
To get more insight we timed the execution of the function manually with 
“std::chrono::high_resolution_clock”. The result of this timing can be seen in figure 5. It is 
apparent from the spikes in the graph, that some calls to determineWetDryState() take a lot 
longer to execute than most other. Importantly, since we are timing the execution of one 
function call on its own, this does not show a load imbalance, as that depends on how the 
work is distributed among the processes. However, if one thread had to handle more spikes 
than the others that could cause a load imbalance. 
 

 
Figure 5: the execution time of all calls to determineWetDryState(). The specific call to the 

function is on the x axis, and spikes indicate that some calls take much longer than the 
others. 

 

4 



To profile the function and get information about the load imbalance we first tried to use 
likwid with the performance groups FLOPS_DP and FLOPS_SP. However, after running the 
command  “likwid-perfctr -g FLOPS_DP -g FLOPS_SP mpiexec -np 30 
./SWE-MPI-Runner-reference -x 500 -y 500“  we got the error “Unsupported Processor”. 
When referencing the supported architectures list [1] it does not contain the 
microarchitecture golden clove used by the saphire rapids Intel Xeon Platinum 8480+ 
Processor that is used on CoolMUC4.  
 
This result made us next try perf, using the “seconds time elapsed” to time every thread and 
observe if there was large discrepancies.  However, on the cluster we got “perf: command 
not found” even after loading “likwid/5.2.2-gcc12-perf”. We were not able to run it locally 
either, getting the error “access to performance monitoring is limited”. 
 
Therefore we next tried to use vallgrind to achieve something similar, getting the instruction 
count for each thread to see if there is a load imbalance. The results are shown in figure 6. 
The results from vallgrind was that every thread spent the exact same amount of instructions 
on determineWetDryState(), 3811500 for a grid of 250x250. The chance that every thread is 
running the exact same number of instructions are very slim, so we therefore probably have 
done something wrong in our profiling. 
 

 
Figure 6: Number of instructions per thread 

 
 
 

5 



Due to these result we opted to use a manual method where we would time the function, 
much like in figure V, but include the PID so we can sum up the work per process. The work 
per process can be seen in figure 7. We ran this for x 1000, y 1000. 
 

 
 

Figure 7: execution time per process, measured in CPU time.  
 
The reason for this not adding up to the CPU time seen in Vtune, is that our code to 
measure the function time slows down the program quiet a lot. However, this should be the 
same for all threads, and the load imbalances should still be visible.  The larges difference in 
load was 0.54s between thread 5 and 0.  
 
​

 

6 



For our load imbalance code we wanted to add openMP dynamic scheduling to the for loop 
calling determineWetDryState(). determineWetDryState is called once by 
computeNetUpdates() in build/_deps/swe-solvers-src/Source/FWaveSolver.hpp, which is the 
function responsible for computing the updates for one cell. 
computeNetUpdates() is called in a nested for loop in 
Source/Blocks/WavePropagationBlock.cpp 
 

 void Blocks::WavePropagationBlock::computeNumericalFluxes() { 

 RealType maxWaveSpeed = RealType(0.0); 

 

 for (int i = 1; i < nx_ + 2; i++) { 

   for (int j = 1; j < ny_ + 1; ++j) { 

     RealType maxEdgeSpeed = RealType(0.0); 

 

     wavePropagationSolver_.computeNetUpdates( 

       … 

     ); 

     maxWaveSpeed = std::max(maxWaveSpeed, maxEdgeSpeed); 

   } 

 } 

 for (int i = 1; i < nx_ + 1; i++) { 

   for (int j = 1; j < ny_ + 2; j++) { 

     RealType maxEdgeSpeed = RealType(0.0); 

 

     wavePropagationSolver_.computeNetUpdates( 

     … 

     ); 

     maxWaveSpeed = std::max(maxWaveSpeed, maxEdgeSpeed); 

   } 

 } 

… 

Content of computeNumericalFluxes. Arguments for compute net updates as well as the end 
of the function are not shown to keep it somewhat brief. 
 

 

7 



We used openMP pragmas to collapse the for-loops and add dynamic scheduling. Changes 
are shown in bold. 
 

void Blocks::WavePropagationBlock::computeNumericalFluxes() { 

 RealType maxWaveSpeed = RealType(0.0); 

 

 #pragma omp parallel 

 { 

   RealType maxWaveSpeedLocal = RealType(0.0); 

   #pragma omp for schedule(dynamic) reduction(max:maxWaveSpeedLocal) 

   for (int i = 1; i < nx_ + 2; i++) { 

     for (int j = 1; j < ny_ + 1; ++j) { 

       RealType maxEdgeSpeed = RealType(0.0); 

 

       wavePropagationSolver_.computeNetUpdates( 

… 

       ); 

       maxWaveSpeedLocal = std::max(maxWaveSpeedLocal, maxEdgeSpeed); 

     } 

   } 

   #pragma omp for schedule(dynamic) reduction(max:maxWaveSpeedLocal) 

   for (int i = 1; i < nx_ + 1; i++) { 

     for (int j = 1; j < ny_ + 2; j++) { 

       RealType maxEdgeSpeed = RealType(0.0); 

       wavePropagationSolver_.computeNetUpdates( 

… 

       ); 

       maxWaveSpeedLocal = std::max(maxWaveSpeedLocal, maxEdgeSpeed); 

     } 

   } 

   #pragma omp critical 

   { 

     maxWaveSpeed = std::max(maxWaveSpeed, maxWaveSpeedLocal); 

   } 

 } 

… 

 
 

8 



After doing this optimization we once again ran our manual load imbalance program. The 
results of our manual run can be seen in figure 8. 
 
 

 
Figure 8: Execution time per thread after dynamic scheduling 

 
While the load this time is much more balanced, the execution time per thread is also much 
higher (~10x). We think this might be because of the critical section in the dynamically 
scheduled code, which we have seen in assignment 2 to overall slow down code for many 
processes. However, when we try to run the code with a reduction instead we get some 
floating point exceptions that we are unable to mitigate.  
 

computeNumericalFluxes 
 
cmake -DENABLE_OPENMP=ON .. 
export OMP_NUM_THREADS=4 
 
Mon Jan 20 11:23:14 2025    ​Simulation finished. Printing statistics for each process. 
------------------------------------------------------------------ 
Mon Jan 20 11:23:14 2025    ​Process 0 - CPU Time: 135.085 seconds 
 
 

9 



 
 

​
 

10 



Optimization 2 - Single-Core Optimizations 
The tests were conducted sequentially because, in this part, we are focusing on 
single-core.  

updateUnknowns 
Location: Source/Blocks/WavePropagationBlock.cpp 

Function Description 
The function is part of the simulation solver and is responsible for updating the cell averages 
of the simulation grid based on the computed updates. Specifically, it updates the height h, 
horizontal momentum hu, and vertical momentum hv of each cell in the grid. Using 
_mm256_cmp_pd and _mm256_blendv_pd eliminates the need for conditional branches 
and improves execution efficiency. 
 

Optimization description 
__m256d is a data type provided by Intel's AVX (Advanced Vector Extensions) intrinsics. It 
represents a 256-bit SIMD register that can store and operate on four double-precision 
(64-bit) floating-point values simultaneously. These registers allow vectorized computations, 
meaning a single instruction can process multiple data elements in parallel. 
 
We have rewritten this method using the instructions: 

-​ load/store: _mm256_loadu_pd, _mm256_storeu_pd 
-​ arithmetic operations: _mm256_add_pd, _mm256_mul_pd, _mm256_sub_pd 
-​ handling of conditions:  

-​ _mm256_cmp_pd: compare all four elements in the h vector against a value 
to generate a mask 

-​ _mm256_blendv_pd: the mask generated by the previous function  is then 
used to update values selectively: 

Results 
Testing command: ./build/SWE-MPI-Runner -x 500 -y 500 
Machine specs: AMD Ryzen 7 5800H 
 

baseline 12.60  12.64  13.87  12.86  12.81  12.82  14.60  12.85  12.86  13.01 

simd 11.56  11.49  11.47  11.53  11.46  11.51  11.51  11.75  11.50  11.63 

 
FWaveVecSolver has an average execution time of 13.09 seconds  
The optimized solver has an average execution time of 11.54 seconds  
 
 
 

11 



 
 
 
 

computeNetUpdates 
File Location: swe-solvers/Source/FWaveVecSolver.hpp 
 
This piece of code is a lot, as seen in the initial profiling result. Combined with the function 
calls to fWaveComputeWaveSpeeds and fWaveComputeWaveDecomposition it takes 
around 52% of the computation. However, this code is not part of the SWE project. We have 
made a fork on the SWE-Solvers to be able to make changes. The main branch of the 
SWE uses FWaveSolver, but it also uses optimized FWaveVecSolver.Below, we 
compare the differences between them. 

Description of the existing optimizations 
SIMD Directives: FWaveVecSolver uses #pragma omp declare simd to indicate that 
the functions computeNetUpdates, fWaveComputeWaveSpeeds, and 

12 



fWaveComputeWaveDecomposition should be vectorized, allowing the compiler to 
generate SIMD instructions 
 
Reduced Redundant Computations: FWaveVecSolver avoids the direct computation of 
values. Instead, the calculated values are stored as member variables and accessed 
multiple times, which reduces the number of floating point operations and square root 
computations. A good example of such an approach is the computation of roeSpeed0 and 
roeSpeed1. 

 
 
Minimal Use of Arrays: FWaveSolver stores results in arrays, while the 
FWaveVecSolver uses individual variables. This can help the compiler generate more 
efficient SIMD. 
 
Inline of Wetting/Drying: FWaveVecSolver directly inlines the logic for determining the 
wet/dry state. 

Attempts at optimization 
Square root caching: Computing square roots is the most expensive operation in this 
module. In our attempt, we stored the computed values of the square root using a hashmap. 
This significantly reduced the number of calls to compute the square root; however, the 
hashmap was too heavy, leading to a performance decrease. 
 
Branching reduction: branching of the program can be reduced by applying the operation 
used in the optimization of updateUnknowns by applying _mm256_cmp_pd with a 
combination of _mm256_blendv_pd. However, SIMD mask instructions are applied to 
multiple data points in parallel (4 or 8). Since the solver processes single values, we did not 
use the remaining values of the operations, which achieved branchless execution but did not 
bring performance benefits. The number of instructions should still be the same, but the 
branching, if only if-else, is relatively straightforward, so the compiler might not have a 
problem handling this. 
 
Prefetching values: We tried prefetching values (e.g., hLeft, hRight, huLeft, huRight, bLeft, 
bRight). Performance did not benefit from this, which is most likely because only a few 
values fit into the CPU cache without explicit prefetching. If the data is already in the cache 
or the memory access pattern is predictable, the overhead of prefetching can outweigh the 
benefits. 
 
Fused multiply-add operations: Using instructions std::fma, we can combine multiplication 
and addition into a single operation in numerous module places. This effectively reduces the 
number of instructions, and we have seen performance increase for this one.  
 
 
 

13 



Results 
Testing command: ./build/SWE-MPI-Runner -x 500 -y 500 
CPU: AMD Ryzen 7 5800H 
 
In the outcome the only modification that made sense was introduction of fma operations 
and inlining of functions fWaveComputeWaveSpeeds, 
fWaveComputeWaveDecomposition.We compared the implementation by averaging the 
average CPU time of the simulation.  
 

nofma 15.79 14.62 15.78 16.58 15.29 15.92 15.67 16.01 15.49 14.43 

fma 15.06 14.31 14.43 14.14 14.25 15.38 13.99 14.85 15.05 13.84 

 

 
FWaveVecSolver has an average execution time of 15.56 seconds  
The optimized solver has an average execution time of 14.53 seconds  
 
This modification speeds up the code.  

Tools::Float2D 
File Location: Source/Tools/Float2D.hpp 

14 



Function Description 
The Float2D module is a convenience helper class that handles 2D float arrays. It provides a 
simple way to access and manipulate elements in a 2D grid. However, it is called many 
times in the simulation, so making it as efficient as possible might be reasonable. Specifically 
<double>operator[](int) from the Valgrind profiling report, this operation takes around 19% of 
compute time.  

Optimization Description 
Since the code is already very lightweight, there are limited options for optimizing it. We 
inlined the function calls and precomputed the pointers. Instead of recalculating data_ + 
(rows_ * i) every time we store the result in columnPointers_[i], which is computed 
in parallel to minimize the overhead. 

Results 
When measuring and comparing the execution time, the difference was at the level of 
statistical error. For this reason, we ran the callgrind again to estimate the number of 
instructions. The result is that the initial 18.95% was lowered to 17.01%, which makes it not 
the most effective but definitely suitable optimization. 

Optimization 4 - Loop fusion in wave propagation 
According to the profiling results, a significant hotspot of the program is calling the solver for 
updating the values on the network. The solver is called by the for-loops over each grid point 
in the block and through the whole domain. In an individual loop, the current value of wave 
height h, wave discharge hu and hv, and bathymetry are passed into the solver to compute 
the update for next time step. As these quantities are processed individually in each loop of 
calling the solver, the for-loop can be parallelized by OMP directives and vectorization 
instructions.  
 
To speed up the solver, the first thing to do is to switch to the FWaveVecSolver where the 
functions are already declared for vectorization using #pragma omp declare simd. This 
directive enables the compiler to generate vectorized functions. Compared to  
FWaveSolver, FWaveVecSolver precomputes some quantities to avoid redundant 
calculation of square root, which is time consuming according to the profiling results. These 
features make FWaveVecSolver the optimal solver in our project.  
 
Loop Fusion: loop fusion refers to the technique that merges separated loops that loop 
through the same domain in order to improve cache locality and parallelism. The original 
code set two nested for loops to calculate the updates on the vertical and horizontal edges 
separately. Our code merges these two loop blocks into one. Two extra loops are required 
for the remaining column and row, because the loop indices for both edges are adapted to 
the interval [1,nx_+1] and [1,ny_+1].  
 

15 



OpenMP provides powerful possibilities in parallelizing for loops. Our plan is to distribute the 
solving of cells to multiple threads. According to the solver, the time step width calculation 
requires maximum wave speed in that domain block. A local variable is created on each 
thread to hold the maximum speed value on that thread, and the local values are reduced at 
the end to evaluate the global maximum wave speed. As previously mentioned, the solver is 
iteratively called in nested for-loops through all cells in a domain block. The outer loops are 
parallelized through  #pragma omp for. The inner loops are vectorized with OpenMP 
vectorization directive #pragma omp simd reduction(max:maxWaveSpeedLocal). A simple 
#pragma omp for is used for the threading of residual loops. The reduction clause reduces 
multiple values on the vector register to a single maximum value. At the end, a critical 
section is generated to allow each thread to write their local maximas and compare them for 
the global maxima.  
 
 
Original: 

void Blocks::WavePropagationBlock::computeNumericalFluxes() { 

 RealType maxWaveSpeed = RealType(0.0); 

// Compute updates on vertical edges 

 for (int i = 1; i < nx_ + 2; i++) { 

   for (int j = 1; j < ny_ + 1; ++j) { 

     ... 

     wavePropagationSolver_.computeNetUpdates( 

       … 

     ); 

     maxWaveSpeed = std::max(maxWaveSpeed, maxEdgeSpeed); 

   } 

 } 

// Compute updates on horizontal edges 

 for (int i = 1; i < nx_ + 1; i++) { 

   for (int j = 1; j < ny_ + 2; j++) { 

     RealType maxEdgeSpeed = RealType(0.0); 

 

     wavePropagationSolver_.computeNetUpdates( 

     … 

     ); 

     maxWaveSpeed = std::max(maxWaveSpeed, maxEdgeSpeed); 

   } 

 } 

… 

 
 

16 



After loop fusion  

void Blocks::WavePropagationBlock::computeNumericalFluxes() { 

 RealType maxWaveSpeed = RealType(0.0); 

 

 for (int i = 1; i < nx_ + 1; i++) { 

   for (int j = 1; j < ny_ + 1; ++j) { 

// Updates for vertical edges 

     RealType maxEdgeSpeed = RealType(0.0); 

 

     wavePropagationSolver_.computeNetUpdates( 

       … 

     ); 

     maxWaveSpeed = std::max(maxWaveSpeed, maxEdgeSpeed); 

 

// Updates for horizontal edges 

     RealType maxEdgeSpeed = RealType(0.0); 

 

     wavePropagationSolver_.computeNetUpdates( 

     … 

     ); 

     maxWaveSpeed = std::max(maxWaveSpeed, maxEdgeSpeed); 

   } 

 

 } 

// Loops for the last row (i=nx_+1) and last column (j=ny+1)  

 for (int j = 1; j < ny_ + 1; j++) {...} 

 for (int i = 1; j < nx_ + 2; i++) {...} 

… 

 
 
After OMP and SIMD  

#pragma omp parallel 

 { 

   // Initialize two local variables for vertical and horizontal edges 

   RealType maxWaveSpeedLocal_u = RealType(0.0); 

   RealType maxWaveSpeedLocal_v = RealType(0.0); 

 

17 



#pragma omp for 

   for (int i = 1; i < nx_ + 1; i++) { 

#pragma omp simd reduction(max : maxWaveSpeedLocal_u) reduction(max : 

maxWaveSpeedLocal_v) 

     for (int j = 1; j < ny_ + 1; ++j) { 

       // Compute the net-updates for the vertical edges 

       … 

       // Update the thread-local maximum wave speed 

       maxWaveSpeedLocal_u = std::max(maxWaveSpeed, maxEdgeSpeed); 

 

       // Compute the net-updates for the horizontal edges 

       … 

       // Update the thread-local maximum wave speed 

       maxWaveSpeedLocal_v = std::max(maxWaveSpeed, maxEdgeSpeed); 

     } 

   } 

 

// Dealing with the vertical edges for cells on the nx_+1 boundary 

#pragma omp for 

   for (int j = 1; j < ny_ + 1; ++j) { 

     … 

     maxWaveSpeedLocal_u = std::max(maxWaveSpeed, maxEdgeSpeed); 

   } 

 

// Dealing with the horizontal edges for cells on the ny_+1 boundary 

#pragma omp for 

   for (int i = 1; i < nx_ + 1; ++i) { 

     … 

     maxWaveSpeedLocal_v = std::max(maxWaveSpeed, maxEdgeSpeed); 

   } 

 

#pragma omp critical 

   { maxWaveSpeed = std::max(std::max(maxWaveSpeedLocal_u, maxWaveSpeedLocal_v), 

maxWaveSpeed); } 

 } 

…q 

18 



 

Profiling of the resulting code 

Comparison to baseline 
The figure below compares the effect of optimizations with the naive serial implementation. 
The execution gets around 1.7 speedup after vectorization. OpenMP improves the 
performance alone by a factor of 4. All the optimizations done in the project contributes to 
5-time-faster execution in total.  

 

Scaling study 
To understand the performance of our optimization, we perform scaling studies. The strong 
scaling is conducted at fixed problem size (1000 grid points on each x and y direction). The 
number of threads used is increased from single to 20 (max number of threads at local). The 
vectorization is enabled and MPI is switched off. Speedups are calculated with respect to 
raw code without using any acceleration technique, and optimized code run with a single 
thread.  

19 



 
 
 
The results of strong scaling indicate a significant improvement when switching from single 
thread to 5-thread implementation. However, the increase in speedup gets slower with 
further increasing number of threads. Only a minor speedup increase is observed when 
using all possible threads at local (20 threads). In our opinion, the hyper-threading in CPUs 
causes two threads competing for resources on a physical core and the communication 
overhead increases as parallelism. These factors depresses the improvement of speedup at 
high-number-threading executions.  
For weak scaling, the problem size at x- and y-dimension is set to 100 times the thread 
number. Other settings in the strong scaling remain unchanged. As the result shows, the 
optimized code exhibits quasi-linear scaling before the 15-thread threshold. The increase 
slows down after it due to the reason mentioned above.  

20 



 

Testing 
The program writes the resulting heights of water into an output binary file of type .nc.  The 
Network Common Data Form is a file format commonly used for storing scientific data. For 
testing, we wrote a simple diff script using the library  netCDF4 that allowed us to compare 
the resulting files. Specifically, we tested grid sizes 250x250 and 500x500. All optimization 
mentioned in this report passed this test. 
 
 
​
​

 

21 

https://pypi.org/project/netCDF4/


References​
[1] Likwid Supported Architectures. 
https://rrze-hpc.github.io/likwid/Doxygen/index.html#Architectures 
Accessed 21.01.2025 
 
 
 

22 

https://rrze-hpc.github.io/likwid/Doxygen/index.html#Architectures

	Final Project 
	How to build/run our project 
	Initial Profiling 
	Callgrind  
	 

	​ 
	Optimization 1 - resolving load imbalances from wetting/drying with openMP 
	computeNumericalFluxes 

	​ 
	Optimization 2 - Single-Core Optimizations 
	updateUnknowns 
	Function Description 
	Optimization description 
	Results 

	computeNetUpdates 
	Description of the existing optimizations 
	Attempts at optimization 
	Results 

	Tools::Float2D 
	Function Description 
	Optimization Description 
	Results 


	Optimization 4 - Loop fusion in wave propagation 
	 
	Profiling of the resulting code 
	Comparison to baseline 
	Scaling study 

	Testing 

