MEMORY AND QUERY TRADE-OFFS FOR

GRAPH PROPERTY TESTING

Benjamín Benčík, Sumegha Garg

DIMCAS - REU 2024

GRAPH PROPERTY TESTING

PROPERTY TESTING

Definition (*e* **distance)**

For any graph a property \mathcal{P} and $0 \le \epsilon \le 1$, we say that a graph *G* is ϵ -far from having \mathcal{P} if it has a distance greater than ϵ from every graph with \mathcal{P} . Otherwise, the graph is ϵ -close.

Definition (Graph property tester)

An algorithm testing property \mathcal{P} is given a distance parameter ϵ and can perform queries concerning the existence of edges between any pair of vertices. If the tested graph has the property, the algorithm should accept with probability at least 2/3. If it is ϵ -far from having the property, the algorithm should reject at least with probability 2/3.

- 1. Adjacency matrix model
 - Tester given access to an oracle $g: V \times V \rightarrow \{0, 1\}$
 - $dist(G_1, G_2)$ is fraction of pairs (u, v) such that $g_1(u, v) \neq g_2(u, v)$
- 2. Incidence function model
 - Degree of vertices is bounded by d
 - Tester is given access to $g: V \times [d] \rightarrow V \cup \{null\}$
 - $dist(G_1, G_2)$ is fraction of pairs (u, i) such that $g_1(u, i) \neq g_2(u, i)$

MODEL CASE - K-EDGE CONNECTIVITY

- 1: for i = 1 to $log(2/\tilde{\epsilon})$ do
- 2: Uniformly and independently sample $m_i = \frac{8 \log(2/\tilde{\epsilon})}{2i\tilde{\epsilon}}$ vertices
- 3: For each sampled vertex v, perform 2^i BFS iteration
- 4: **if** If any search finds small connected component **then**
- 5: reject
- 6: end if
- 7: end for
- 8: accept

Query complexity: $O\left(\frac{\log^2 1/\tilde{\epsilon}}{\tilde{\epsilon}^2}\right)$

METHODOLOGY

STUDYING MEMORY IN PROPERTY TESTING SETTINGS

- we studied ${\mathcal M}$: memory complexity \times query complexity of testers for a given property
- goal is to provide lower bound
- methodology of the study:
 - 1. pick a property \mathcal{P}
 - 2. come up with low query algorithm
 - 3. come up with low memory algorithm
 - 4. conjecture the complexity lower bound of ${\mathcal M}$
 - 5. come up with proof of lower bound

Consider two graph families $\mathcal{G}_1, \mathcal{G}_2$ defined as:

- G_1 : family of random graphs with *n* vertices of degree bound 3/4n
- G_2 : same as G_1 but one vertex is picked at random and connected to the rest of the graph to create a star of degree n-1

Low Memory algorithm: Naive degree checking

- Query complexity: $O(n \log (n))$
- Memory complexity: $O(\log(n))$

DETECTING K-STAR

Consider two graph families $\mathcal{G}_1, \mathcal{G}_2$ defined as:

- G_1 : family of random graphs with *n* vertices of degree bound 3/4n
- \mathcal{G}_2 : same as \mathcal{G}_1 but one vertex is picked at random and connected to the rest of the graph to create a star of degree n-1
- Low Memory algorithm: Naive degree checking
 - Query complexity: $O(n \log(n))$
 - Memory complexity: $O(\log(n))$

Query optimal algorithm: Degree incrementing

- Query complexity: O(n)
- Memory complexity: $O(\log(n)^2)$

LOW QUERY ALGORITHM

what should be fkn k and how is this memory log2(n)

- 1: $S = \{1, ..., n\}$
- 2: repeat $\log(n)$ times
- 3: $A \leftarrow V : |A| = k$
- 4: Query (u, v) for all $u \in A$ and $v \in S$

5:
$$S = \{v | (u, v) \in E \forall u \in A\}$$

- 6: **end**
- 7: **if** *S* = ∅ **then**
- 8: accept

9: **else**

10: reject

11: end if

STAR-FREENESS TESTER

1: S = Ø

2: repeat 2n times

- 3: $A \leftarrow V : |A| = k$
- 4: $B \leftarrow V : |B| = k$
- 5: $S = \{v \in S \cup A : v \text{ is connected to all vertices in } B\}$

6: **end**

- 7: **if** *S* contain vertex of degree n 1 **then**
- 8: accept

9: **else**

10: reject

11: end if

ALGORITHM THE ANALYSIS

Lemma (Soundness of the algorithm)

The algorithm with constant parameter k rejects graphs from the family \mathfrak{G}_2 with probability $\geq 2/3$.

Lemma (Constant size of S) $max|S|\log(n) = O(\log(n)).$ Once the star vertex s is added into the set S it will not be deleted. If $s \in S$ the algorithm correctly rejects graphs from \mathbb{G}_2 . Therefore we want $\Pr[s \notin S] \le 1/3$.

$$\left(\frac{n-1}{n}\right)^{k \ge n} \le 1/3$$
$$k \ge n \log\left(\frac{n-1}{n}\right) \le \log\left(1/3\right)$$
$$k \ge \frac{-\log\left(3\right)}{2n \log\left(1-\frac{1}{n}\right)} \approx \frac{-\log\left(3\right)}{2n\frac{-1}{n}} = \frac{\log\left(3\right)}{2}$$

PROOF OF LEMMA 2

- consider 3/4*n* regular graph (hard instance)
- denote S_i as the state of the set S in *i*-th iteration

$$|S_{i}| \sim Bin\left(|S_{i}|, \left(\frac{3}{4}\right)^{k}\right) + Bin\left(k, \left(\frac{3}{4}\right)^{k}\right)$$
$$\mathbb{E}[|S_{i}|] = k\left(\frac{3}{4}\right)^{k} \cdot \sum_{j=0}^{j-1} \left(\frac{3}{4}\right)^{jk} \le \frac{k3^{k}}{4^{k} - 3^{k}}$$

Apply the Chernoff inequality

GRAPH MODELS WITH RANDOMNESS

TYPES OF RANDOMNESS

- data streaming: edges are received in a random order
- semi-random queries: query to a vertex v gives random neighbour of v

CLIQUE IN THE SEMI-RANDOM MODEL

- Easy instance:
 - \mathfrak{G}_1 : there are two isolated cliques of size n/2
 - \mathcal{G}_2 : random graph where each edge has probability 1/2
- Harder instance
 - G₁: there is a clique of size at least n/10 rest of the vertices form isolated random graph
 - $-\ \ \mathcal{G}_1$: random graph where each edge has probability 1/2

PROJECT CONTINUES VERY INTERESTING RESULTS COMING SOON!

This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 823748.