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What is derandomization?
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What is derandomization?

Definition (Definition BPP Class)

Let L C {0,1}* be a language. We say that L is in BPP if there is
a poly-time PTM M such that for all x € {0,1}*

w| N

xel = Pr(M(x)zl)Z%andx¢L = P(M(x) =0) >

Derandomization is process BPP — P

It is not known BPP < P
At least P C BBP holds trivially
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Why do we care?

Derandomization gives insight into questions:

What is the difference between problems that are randomized
and deterministic?

How can we use an imperfect source of randomness to achieve
an almost perfect source?

How much true randomness algorithm is neededs?
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How to approach derandomization?

Common techniques of derandomization:
Maximization of considional expectation replace random
choices with deterministic ones by iteratively fixing decisions
to maximize expected value
Use pseudorandom generators replace perfect randomness
with pseudorandom-randomness generated using a small seed
Limited Independence Instead of fully independent random
variables use k-wise independent

In this lecture we will focus on pseudorandom generators.
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Pseudo-random generators
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Pseudorandom Distribution

Definition (Pseudorandom Distribution (PD))

Let R be a distribution over {0,1}"™,S € N,e > 0. We say that R
is (S, €)-pseudorandom distribution if for every circuit C of size at

most S:
| Pr(C(x)=1)— Pr (C(x)=1)|<e

x~R x~Unm

Defined in terms of maximum advantage € a circuit of size S can
get when distinguishing R from uniform distribution.
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Pseudorandom Distribution

Bounded Circuit

A

Private
Coin

e

Pseudorandom

Unifrom

Distribution Distribution

9/57 | Derandomization | Benjamin Ben&ik | February 2025



Technische Universitat Miinchen m

Pseudorandom Generator

Definition (Pseudorandom generator PG)
If S: N — N is a poly-time computable monotone function then a
function G : {0,1}* — {0,1}* with input z (seed) is called
S(¢)-pseudorandom generator if Vz € {0,1}

1G(2)] = 5(1)

G(z) can be computed in time 2¢¢ for a constant ¢

Ve e N: G(Up) is an (S(I)3, 1—10)—pseudorandom distribution

Maps a seed z € {0,1}¢ to a longer output G(z) € {0,1}™ that is
indistinguishable from uniform distribution by and small circuit C
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Pseudorandom Generator
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Pseudorandom Generator

> The definition allows the pseudorandom generator to run in
exponential time with respect to the seed size.

> Question: What can possible PRG distinguisher use to its
advantage?
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Pseudorandom Generator

> The definition allows the pseudorandom generator to run in
exponential time with respect to the seed size.

> Question: What can possible PRG distinguisher use to its
advantage?

> Are any bits biased towards certain values?
> Is any pair of indices correlated?
» How frequent are characters in a string?
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Pseudorandom Generator

> The definition allows the pseudorandom generator to run in
exponential time with respect to the seed size.

> Question: What can possible PRG distinguisher use to its
advantage?

> Are any bits biased towards certain values?
> Is any pair of indices correlated?
» How frequent are characters in a string?

Homework: Consider h(z) = (ZLO z,-) mod 2 is
G(z) = z o h(z) valid (I + 1)-pseudorandom generator? Give a
proof for your answer.
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BPP vs P

Lemma (BPP vs P)

If there is a 2¢'-pseudorandom generator for ¢ > 0 then BPP = P.

If L € BPP then by definition there exists an algorithm PTM
M(x, r) that uses random bits r = {0,1}P¥(IX) and has
correctness and soundness 2/3.

Idea: instead of using truly random bits, use PRG over all possible
seeds.
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BPP vs P

Proof sketch:
Let G : {0,1}* — {0,1}°() where S(¢) =2 for e > 0
PTM M can use at most poly(|x|) randomness
Use G to simulate randomness of PTM M on [ = log(|x|)

For each seed z € {0,1}¢ compute G(s) € {0,1}2"
Run M(x, G(z)) and record the output
Output the majority result over all runs

The number of possible seeds is 2/ = 2'°&(Ix)) = |x|
Argue that correctness and soundness is maintained
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Computational Hardness
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Hardness

Definition (Average-case Hardness)

The average-case hardness of f denoted H,yg(f) : N — N maps
every n € N to largest number S such that for every boolean
circuit C on n inputs and size < S holds

1
N ——

(C(x) = f(x)) < 5]

N —

Pr
x~{0,1}"

A function g is hard to compute if no "small” circuit can do much
better at computing the function than guessing.

Claim: There exists a function that has an exponential
average-case hardness.
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Hardness

Definition (Worst-case Hardness)

Let f:{0,1}* — {0,1}, the worst-case hardness of f denoted
Hwrs(f) : N — N maps n € N to the largest number S such that
every boolean circuit of size < S fails to compute f on input

{0,117,

Worst-case hardness is weaker than average-case hardness.
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Hardness

Definition (Worst-case Hardness)

Let f:{0,1}* — {0,1}, the worst-case hardness of f denoted
Huwrs(f) : N — N maps n € N to the largest number S such that
every boolean circuit of size < S fails to compute f on input

{0,1}".
Worst-case hardness is weaker than average-case hardness.

Homework: Show the construction of a function that has
exponential worst-case hardness.
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Pseudorandomness — Hardness

Lemma (Pseudorandomness implies harndess)

Let G:{0,1} — {0,1}**! be a S(¢)-pseudorandom generator.
Let T = {G(z) : z € {0,1}") and define f : {0,1}"*! — {0,1} as
f(x) =1 ifx € T and 0 otherwise. The function f is S(¢)-hard

To show validity of the construction assume that f is not hard and
arrive to contradiction that S(/) is not pseudorandom.
Proof:

If f is not hard there exists C computing it
Number of possible seeds is at most 2/ = |T| < 2"

C can accept in at most 1/2 cases

= < = —
XN%:+1(C(X) 1) — 2n+1 2

18/57 | Derandomization | Benjamin Ben¢ik | February 2025



Technische Universitat Miinchen TI-I."

Pseudorandomness — Hardness

» Trivially Prewy..,(C(G(x))=1)=1

> The distinguishing advantage is too high

n+1(

Pr [C(G(x))=1]— Pr [C(x)=1]|>1— % _1

x~Un x~Upy1 2

P> There is a small C that can distinguish distribution generated
by G from Up+1, therefore G cannot be a PRG

0
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Hardness — pseudorandomness - Yao's Theorem

Let Y be a dirtribution over {0,1}™. Supose there exists
S > 10n, € > 0 such that for every circuit C of size < 2S and
i€ [m]

1 €
P ey Zic1)=2zj)) < =+ —
ZNrY(C(Zl,Zz, ,2i-1) = Zi) >
The Y is (S, €)-pseudorandom distribution.

If no small circuit can predict the next output of distribution Y/,
then the distribution is pseudorandom.
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Hardness — pseudorandomness - Yao's Theorem

DO - EE®[]
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Hardness — pseudorandomness - Yao's Theorem

Proof of Yao’s theorem:
Suppose the Y is is not (S, €)-pseudorandom, then there exists D

DI <S A | Pr(D()=1)- Pr(D(N=1)|>c (1)

Construct m distributions Hy, H>, ... Hp, :

r~Upnp i=1
H=<r~Y i=m
(rl,...;r))~Yo(rig1,.-cstm)~Uni 0<i<m
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Hardness — pseudorandomness - Yao's Theorem

Split the total distinguishing advantage into sum of distinguishing
advantages for each position:

| Prrey (D(r)=1)=Pr, y(D(r)=1)|=>_""", | Prrwy(D(H;)=1)—Pr, y(D(H;-1)=1)|
Since the overall difference is at least ¢, there must be i such that

| Pr (D(H;) =1) — Pr(D(Hi_1) =1)| > —

r~Y r~U m

Distinguisher C can be constructed by combining D(H;), D(H;-1)
and resulting circuit has size < 25 which implies contradiction

+

€
m

N~

Pr(C(z1,22,...,2i-1) = zi) >
z~Y

O
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Hardness — pseudorandomness

Lemma (Pseudorandomness from hardness (16.13, AB) )
Suppose there is f € E with Hayg(f) > n*. Then there is a
S(/)-pseudorandom generator for which S(I) =1+ 1

The construction of generator is Vz € {0,1} : G(z) = z o f(2)

We just need to show this it is a valid ((/ +1)3,1/10)
pseudorandom generator by using Yao's theorem.
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Hardness — pseudorandomness

Proof:
By Yao's theorem It is enough to show that there is no circuit C of
size < 2(/+1)3 and i € [/ + 1] that could predict:

1 €

R R A (Ea

For i < I, the i-th bit of G(z) is completely random by
construction thus, no circuit, regardless of size, can predict it

For i = I 4+ 1, boils down to computing f but the function is
n* hard so it cannot be computed by circuit of size 2(/ + 1)3
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Nisan-Wigderson Construction
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Approaches to extending

> We showed expansion one bit

> Question: How about larger expansion?
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Approaches to extending

> We showed expansion one bit

> Question: How about larger expansion?

Gz)=2z1...zp00f(z1-..212) 0 Z1joy1--- 210 F(Z1)241 -+~ 21)
Gi(z)=2z1...zy30f(z1...zy3)0...0f(0Zy/341---21)

> By above, we do not get past linear expansion

> ...yes, we can do better, that is why we are here
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Larger expansions

Pick random subsets of indices, pass them through the hard
function f, and concatenate the results.
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Construction

Definition (Nisan-Widgerson Generator)

IfZ ={h,...,Im} is a family of subsets of [¢(] where each |/;| =/
and f:{0,1}" — {0,1} is any function then the (Z, f)-NW
generator is the function NW% : {0,1}/ — {0,1}™:

VvZ € {0,1} : NWH(Z) = f(2),) o f(Z,) 0 ... 0 F(Z},)

where Z; = {z : k € I;}

Vaguely we require that family of subsets is constructed in a
"reasonable way” and f is "sufficiently hard”.
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How to construct subsets?

Definition (Combinatorial design)

If d,n,¢ € N are numbers with £ > n > d then a family
Z=A{h,...,In} of subsets of [¢] is an (¢, n, d)-design if
Vje[m]:|lj|=nand |l;NI| < d for every j # k.

The above definition guarantees that the inputs to f

have a constant size
are pairwise dependent on at most d bits
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Algorithm 1 Subset Construction

Input: /: seed size, d: max intersection, n: subset size
Output: (¢, n, d)-design with 29/10 sets

1. Z+0

2: for each n-sized set | € [(] do

3 if |Z| = 29/10 then

4: return 7

5: end if

6: for each j € [m] do

7: if |/ N /]| <d then
8: I+ ZUd{l}
9: break

10: end if

11: end for

12: end for
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Construction of combinatorial design

Lemma (Construction of combinatorial design (16.18 AB) )

On input £,d, n with £ > 10n?/d algorithm for Algorithm 1 will
construct a (¢, d, n)-design with 29/10 sets.

Running time: poly(m)2¢ — 20(9)

Need to prove the greedy algorithm does not “get stuck”
More formally for m < 29/10 there always exists n-sized / C [/]
which could be added into 7

We show that by picking elements from [¢] into Z with
uniform probability above condition is always satisfied
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Construction of combinatorial design - Sufficient size of /

Proof:
» Add x € [/] to | with probability 2n/¢
» Now we calculate Pr(|/| > n)
» Model |I| ~ Bin(l,2n/¢) = E[|l|]] =2n
» By Chernoff for § =1/2

Pr(|l] > n) =1—Pr(|/] < n)
=1—Pr(ll[ < (1 -1/2)E[/])
> 1 - exp(~ (PE[1]))/2)
=1—exp(—n/4)

> When [ is larger than n we truncate it without damaging
properties of the design
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Construction of combinatorial design - Sufficient Independance
» Each /; picks elements uniformly at random,
» Therefore Pr(x € I;) = n/¢
» Model Vj € m: |INlj| ~ Bin(¢,n/l) = E[|IN]j|]=n
» By Chernoff for all j € [m] and d =d/n—1

Pr([/0 ] = d) = Pr(lI 0 | = (1 = S)E[[/ 0 [j[])

n— 2”
< exp(—(8%n)/3) = exp (—(“’/31)>
SR
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Construction of combinatorial design - Putting it together

» Proof sets S(n) < 2" and d = log(S5(n)/10)
» From above d < n/10
» From statement we have m < 29/10

P In Algorithm 1 there is not a suitable set 7

Pr(# suitable subset )

=Pr(|l] > n)-Pr(Vj [[] : |[IN]j| < d)
=Pr(|f| > n)- (1= Pr(¥j [l : [IN}] > d))*
- (1 o) (1 (el /)"

> (1 —exp(—n/4))-(1— (eXp(—n/IOO))Q"/mO
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Construction of combinatorial design - Putting it together

According to AB "together these two conditions imply that with
probability at least 0.4, the set | will simultaneously conditions”.
Considering this probability is good enough, we conclude proof for
the existence of combinatorial design [J
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Pseudorandomness using the NW generator

We use the combinatorial design to show the central theorem of
this lecture

If Zis an (/, n, d)-design with |Z| = 29/ and f : {0,1}" — {0,1}
satisfying Hayg(f)(n) > 24 then the distribution NW/%(U)) is a
(Havg(f)(n)/10,1/10)-pseudorandom distribution.

Unformally: f is a hard function and Z is a design with sufficiently
large parameters, then NWZ(U)) is a pseudorandom distribution.
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NW Proof Outline

Idea similar as proof for (/ + 1)-pseudorandom generator

We want to prove that that for i € [21%/9] there does not exist
S/2 sized circuit guessing the next bit (Yao's theorem)

Assume there exists such a circuit
Manipulate the expression and apply averaging principle

Arrive to contradiction about hardness of f
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NW is PRG - Using Yao's Theorem

For contradiction suppose there exists a circuit C and i € [29/10]
deciding random bit R; from distribution Ry,... Ri_1:
Pr (C(RLRo... Ri1)=R)>24—" (2
ZNL@ 1, N2y .0y i-1) — ] _5 102d/10
R=NW".(2)

Assuming Equation (2) holds we use the definition of NW(2)
where Z; with Z being seeds to hard function f:

P (CH(Z), - F(2y) = £(Z1))
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NW is PRG - Splitting the Seed

> X=12
" Y=,
> Bits of Z are independent X, Y are independent r.v.

> f; takes the role of combinatorial design

Y

]

000000000000

"

]

£
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NW is PRG - Splitting seed

Based on the new notation rewrite Equation (3)

1 1

Pr (C(A(X,Y),...,fici(X,Y) =f(X)) > + g 297 (4)

X~U,p
Y~Up— )y

J<i:fi(X,Y)=f(Z;) picks parts of X, Y that are relevant to /;
Observe Y is dependant only on /; thus can be fixed to some string
y {0,137

o (C(aXy), - fia(Xy)) 2 L, 1 5
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NW is PRG - Averaging principle

Lemma (Averaging principle)

Have event E depend on two uniform independent random
variables A € U, B € Us:

3b € B Pr(E(A,b)) > Pr(E(A, B))

Fe(E(A B)) = %%F(B = b)Pr(E(A, b)) (6)
A!?lrg( |B| %Pr )) by B € Uy (7)
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NW is PRG - Averaging principle

Joint probability is the average of Pra(E(A, b)). For contradiction:

Vb€ B: Pr(E(A.b)) < Pr(E(A.B))

Prag(E(A, B)) cannot be average OJ
Applying the lemma to Equation (3) there exists y € {0,1}"*:

1 1

XELH(C(TCI(X7Y)7' FiaXoy) = F(X) 2 5+ 19590 (®)

43/57 | Derandomization | Benjamin Benéik | February 2025



Technische Universitat Miinchen TI-I."

NW is PRG - Constructing a circuit

Since i # j : |liN ;| < d f;(X,y) depends on at most d coordinates
Construct a circuit D:

1. Take X ~ U, and hard-wire y € {0,1}"~*
2. For each j < i compute f;(X, y) using small circuit of size d2d
3. Feed the results in to C to obtain f(X) = f(Z},)
D has size i - |small circuit] + |C]|
> < 2d/10
» |small circuit| < d2¢
» |C|=5/2 by Yao
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NW is PRG - Constructing a circuit

Given d = log(5(n))/10

ID| < 29/10. 429 + §/2 = 29 + S/2 (9)
- "’g(lso(’”)S(n)f&) 1 5/2<5 (10)

1 1 11
XELH(D(X):f(X))2§+WZ§+§ (11)

Since there exists a small circuit, this breaks the hardness of f, and
we get contradiction. [J
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Consequences of NW Generator

By setting parameters [ > Ioé?_ggz)), d= |og(150(n))' we can show:

Theorem (Consequences of NW Generator (16.10 AB))

Given f € E and every polynomial-time computable monotone
S : N — N with Hayg(f) > S we can construct S(I)-pseudorandom
generator where S(ev/Ilog(S(eV/1)))¢ for € > 0.
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Consequences of NW Generator

By setting parameters / > |oé?2("z))’ d= Iog(fo(n))' we can show:

Theorem (Consequences of NW Generator (16.10 AB))

Given f € E and every polynomial-time computable monotone
S : N — N with Hayg(f) > S we can construct S(I)-pseudorandom
generator where S(ev/Ilog(S(eV/1)))¢ for € > 0.

Homework: If there exists f € E = DTIME(2°(") and ¢ > 0
such that Hayg(f) > 2°" then BPP = P.
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Extractors
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Motivation

For this part suppose that we are happy with probablistic
algorithms and feel now need to derandomize them

Sources of randomness rarely behave as perfectly uncorrelated
and unbiased coin tosses

Application of extractors

Running randomized algorithms using weak random sources
Recycling random bits

48/57 | Derandomization | Benjamin Benéik | February 2025



Technische Universitat Miinchen m

Definition

Definition (Minimum Entropy)
Minimum entropy: of X denoted as Hoo(X) is

argmax, g {Pr(X = x) <275}

Hoo(x) <n

Hso(x) = niff X is U,

Our goal will be to execute probabilistic algorithms on sources
of randomness with as small Hy(X) as possible

If Hoo(x) > k then it is (n, k)-source
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Definition

Definition (Statistical distance)

Fro two variables X and Y in {0,1}" their statistical distance is
defined as §(X, Y) = maxsco 13 {Pr(X € S) — Pr(Y € S)}

Statistical distance quantifies the maximum difference in
probabilities that X and Y assign to any subset of S
Small statistical distance implies that the distributions are
statistically indistinguishable
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Definition
Definition (Extractor)

A function Ext : {0,1}" x {0,1}* — {0,1}™ is (k, €) extractor
then for all X € {0,1}" with minimal entropy k

C 1. P Ext - P <
vS C {0,1} an,zeli{O,l}f( xt(a, z) € S) re{o,rl}m(r €S)| <e

Extractor is given weak random source X and small seed of
size t and outputs string of m bits that is close to uniform
The extractor "purifies” the weak randomness of X using a
small amount of true randomness

Intuitively, you cannot extract more randomness than what is
present in the source.
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Deterministic extractors do not work

Lemma

For every Ext : {0,1}" — {0,1}™ and every k < n—1 there is a
(n, k)-source such that for every x € X : Ext(x) the first bit is
constant.

Proof:
Fix a deterministic extractor Ext
Denote Sp = {x € {0,1}" : Ext(x) has the first bit 0} and
analogously $;
Observe either |Sp| > 2771 or || > 2"~1
Assume S| > 2"1 and construct X C So
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Deterministic extractors do not work

> Let X = 5
> Evaluate Hoo(X)

Pr(X =x) <27k
1
T <
|Sol
—log(|%Sl) < —k
k<n-1

2,/(

O
Corollary: A deterministic extractor is at least 1/2 statistical
distance from Up,; thus, it needs additional randomness.
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Wrap-up and Applications
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We have seen...

What is derandomization.

Formalization of derandomization through PRG.
Relations between hardness and randomness.
Combinatorial design for selecting subsets.
Nisan-Wigderson: a PRG with exponential extension.

Extractors and relation to derandomization.
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Applications

> Relation of classes BPP and P

> Space-bound computation: is randomness necessary for
space-efficient computation? Hoza (2022)

> Extractors to "purify” weak sources in cryptography

> Construction of commitment schemes in cryptography using
NW Boaz Barak, Ong, and Vadhan (2005)

» New lower bounds in circuit classes
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