
Derandomization
Based on Arora and B. Barak (2006)

Benjamín Benčík

Seminar: Advanced Complexity Theory

March 20, 2025

1/57 | Derandomization | Benjamín Benčík | February 2025

Table of contents

Overview

Pseudo-random generators

Computational Hardness

Nisan-Wigderson Construction

Extractors

Wrap-up and Applications

2/57 | Derandomization | Benjamín Benčík | February 2025

What is derandomization?

3/57 | Derandomization | Benjamín Benčík | February 2025

What is derandomization?

Definition (Definition BPP Class)
Let L ⊆ {0, 1}∗ be a language. We say that L is in BPP if there is
a poly-time PTM M such that for all x ∈ {0, 1}∗

x ∈ L =⇒ Pr(M(x) = 1) ≥ 2
3 and x /∈ L =⇒ P(M(x) = 0) ≥ 2

3

I Derandomization is process BPP→ P
I It is not known BPP ?= P
I At least P ⊂ BBP holds trivially

4/57 | Derandomization | Benjamín Benčík | February 2025

Why do we care?

Derandomization gives insight into questions:
I What is the difference between problems that are randomized

and deterministic?
I How can we use an imperfect source of randomness to achieve

an almost perfect source?
I How much true randomness algorithm is neededs?

5/57 | Derandomization | Benjamín Benčík | February 2025

How to approach derandomization?

Common techniques of derandomization:
1. Maximization of considional expectation replace random

choices with deterministic ones by iteratively fixing decisions
to maximize expected value

2. Use pseudorandom generators replace perfect randomness
with pseudorandom-randomness generated using a small seed

3. Limited Independence Instead of fully independent random
variables use k-wise independent

In this lecture we will focus on pseudorandom generators.

6/57 | Derandomization | Benjamín Benčík | February 2025

Pseudo-random generators

7/57 | Derandomization | Benjamín Benčík | February 2025

Pseudorandom Distribution

Definition (Pseudorandom Distribution (PD))
Let R be a distribution over {0, 1}m, S ∈ N, ε > 0. We say that R
is (S, ε)-pseudorandom distribution if for every circuit C of size at
most S:

| Pr
x∼R

(C(x) = 1)− Pr
x∼Um

(C(x) = 1)| < ε

Defined in terms of maximum advantage ε a circuit of size S can
get when distinguishing R from uniform distribution.

8/57 | Derandomization | Benjamín Benčík | February 2025

Pseudorandom Distribution

9/57 | Derandomization | Benjamín Benčík | February 2025

Pseudorandom Generator

Definition (Pseudorandom generator PG)
If S : N→ N is a poly-time computable monotone function then a
function G : {0, 1}∗ → {0, 1}∗ with input z (seed) is called
S(`)-pseudorandom generator if ∀z ∈ {0, 1}`

I |G(z)| = S(l)
I G(z) can be computed in time 2c` for a constant c
I ∀` ∈ N : G(U`) is an

(
S(l)3, 1

10

)
-pseudorandom distribution

Maps a seed z ∈ {0, 1}` to a longer output G(z) ∈ {0, 1}m that is
indistinguishable from uniform distribution by and small circuit C

10/57 | Derandomization | Benjamín Benčík | February 2025

Pseudorandom Generator

11/57 | Derandomization | Benjamín Benčík | February 2025

Pseudorandom Generator

I The definition allows the pseudorandom generator to run in
exponential time with respect to the seed size.

I Question: What can possible PRG distinguisher use to its
advantage?

I Are any bits biased towards certain values?
I Is any pair of indices correlated?
I How frequent are characters in a string?

Homework: Consider h(z) =
(∑l

i=0 zi
)

mod 2 is
G(z) = z ◦ h(z) valid (l + 1)-pseudorandom generator? Give a
proof for your answer.

12/57 | Derandomization | Benjamín Benčík | February 2025

Pseudorandom Generator

I The definition allows the pseudorandom generator to run in
exponential time with respect to the seed size.

I Question: What can possible PRG distinguisher use to its
advantage?
I Are any bits biased towards certain values?
I Is any pair of indices correlated?
I How frequent are characters in a string?

Homework: Consider h(z) =
(∑l

i=0 zi
)

mod 2 is
G(z) = z ◦ h(z) valid (l + 1)-pseudorandom generator? Give a
proof for your answer.

12/57 | Derandomization | Benjamín Benčík | February 2025

Pseudorandom Generator

I The definition allows the pseudorandom generator to run in
exponential time with respect to the seed size.

I Question: What can possible PRG distinguisher use to its
advantage?
I Are any bits biased towards certain values?
I Is any pair of indices correlated?
I How frequent are characters in a string?

Homework: Consider h(z) =
(∑l

i=0 zi
)

mod 2 is
G(z) = z ◦ h(z) valid (l + 1)-pseudorandom generator? Give a
proof for your answer.

12/57 | Derandomization | Benjamín Benčík | February 2025

BPP vs P

Lemma (BPP vs P)
If there is a 2εl -pseudorandom generator for ε > 0 then BPP = P.

If L ∈ BPP then by definition there exists an algorithm PTM
M(x , r) that uses random bits r = {0, 1}poly(|x |) and has
correctness and soundness 2/3.

Idea: instead of using truly random bits, use PRG over all possible
seeds.

13/57 | Derandomization | Benjamín Benčík | February 2025

BPP vs P

Proof sketch:
I Let G : {0, 1}` → {0, 1}S(`) where S(`) = 2ε` for ε > 0
I PTM M can use at most poly(|x |) randomness
I Use G to simulate randomness of PTM M on l = log(|x |)

1. For each seed z ∈ {0, 1}` compute G(s) ∈ {0, 1}2ε`

2. Run M(x , G(z)) and record the output
3. Output the majority result over all runs

I The number of possible seeds is 2l = 2log(|x |) = |x |
I Argue that correctness and soundness is maintained

14/57 | Derandomization | Benjamín Benčík | February 2025

Computational Hardness

15/57 | Derandomization | Benjamín Benčík | February 2025

Hardness

Definition (Average-case Hardness)
The average-case hardness of f denoted Havg(f) : N→ N maps
every n ∈ N to largest number S such that for every boolean
circuit C on n inputs and size ≤ S holds

Pr
x∼{0,1}n

(C(x) = f (x)) ≤ 1
2 + 1
|S|

A function g is hard to compute if no ”small” circuit can do much
better at computing the function than guessing.

Claim: There exists a function that has an exponential
average-case hardness.

16/57 | Derandomization | Benjamín Benčík | February 2025

Hardness

Definition (Worst-case Hardness)
Let f : {0, 1}∗ → {0, 1}, the worst-case hardness of f denoted
Hwrs(f) : N→ N maps n ∈ N to the largest number S such that
every boolean circuit of size ≤ S fails to compute f on input
{0, 1}n.

Worst-case hardness is weaker than average-case hardness.

Homework: Show the construction of a function that has
exponential worst-case hardness.

17/57 | Derandomization | Benjamín Benčík | February 2025

Hardness

Definition (Worst-case Hardness)
Let f : {0, 1}∗ → {0, 1}, the worst-case hardness of f denoted
Hwrs(f) : N→ N maps n ∈ N to the largest number S such that
every boolean circuit of size ≤ S fails to compute f on input
{0, 1}n.

Worst-case hardness is weaker than average-case hardness.

Homework: Show the construction of a function that has
exponential worst-case hardness.

17/57 | Derandomization | Benjamín Benčík | February 2025

Pseudorandomness → Hardness

Lemma (Pseudorandomness implies harndess)
Let G : {0, 1}` → {0, 1}`+1 be a S(`)-pseudorandom generator.
Let T = {G(z) : z ∈ {0, 1}`) and define f : {0, 1}n+1 → {0, 1} as
f (x) = 1 if x ∈ T and 0 otherwise. The function f is S(`)-hard

To show validity of the construction assume that f is not hard and
arrive to contradiction that S(l) is not pseudorandom.
Proof:
I If f is not hard there exists C computing it
I Number of possible seeds is at most 2` =⇒ |T | ≤ 2n

I C can accept in at most 1/2 cases

Pr
x∼Un+1

(C(x) = 1) ≤ 2n

2n+1 = 1
2

18/57 | Derandomization | Benjamín Benčík | February 2025

Pseudorandomness → Hardness

I Trivially Prx∼Un+1(C(G(x)) = 1) = 1
I The distinguishing advantage is too high∣∣∣∣ Pr

x∼Un
[C(G(x)) = 1]− Pr

x∼Un+1
[C(x) = 1]

∣∣∣∣ ≥ 1− 1
2 = 1

2

I There is a small C that can distinguish distribution generated
by G from Un+1, therefore G cannot be a PRG

�

19/57 | Derandomization | Benjamín Benčík | February 2025

Hardness → pseudorandomness - Yao’s Theorem

Yao’s Theorem (16.14, AB)
Let Y be a dirtribution over {0, 1}m. Supose there exists
S ≥ 10n, ε > 0 such that for every circuit C of size ≤ 2S and
i ∈ [m]

Pr
z∼Y

(C(z1, z2, . . . , zi−1) = zi) ≤
1
2 + ε

m
The Y is (S, ε)-pseudorandom distribution.

If no small circuit can predict the next output of distribution Y ,
then the distribution is pseudorandom.

20/57 | Derandomization | Benjamín Benčík | February 2025

Hardness → pseudorandomness - Yao’s Theorem

21/57 | Derandomization | Benjamín Benčík | February 2025

Hardness → pseudorandomness - Yao’s Theorem

Proof of Yao’s theorem:
Suppose the Y is is not (S, ε)-pseudorandom, then there exists D

|D| < S ∧ | Pr
r∼Y

(D(r) = 1)− Pr
r∼U

(D(r) = 1)| > ε (1)

Construct m distributions H1, H2, . . . Hm :

Hi =


r ∼ Um i = 1
r ∼ Y i = m
(r1, . . . , ri) ∼ Y ◦ (ri+1, . . . , rm) ∼ Um−i 0 < i < m

22/57 | Derandomization | Benjamín Benčík | February 2025

Hardness → pseudorandomness - Yao’s Theorem

Split the total distinguishing advantage into sum of distinguishing
advantages for each position:

| Prr∼Y (D(r)=1)−Prr∼U(D(r)=1)|=
∑m

i=1 | Prr∼Y (D(Hi)=1)−Prr∼U(D(Hi−1)=1)|

Since the overall difference is at least ε, there must be i such that

| Pr
r∼Y

(D(Hi) = 1)− Pr
r∼U

(D(Hi−1) = 1)| ≥ ε

m

Distinguisher C can be constructed by combining D(Hi), D(Hi−1)
and resulting circuit has size ≤ 2S which implies contradiction

Pr
z∼Y

(C(z1, z2, . . . , zi−1) = zi) ≥
1
2 + ε

m

�

23/57 | Derandomization | Benjamín Benčík | February 2025

Hardness → pseudorandomness

Lemma (Pseudorandomness from hardness (16.13, AB))
Suppose there is f ∈ E with Havg(f) ≥ n4. Then there is a
S(l)-pseudorandom generator for which S(l) = l + 1

The construction of generator is ∀z ∈ {0, 1}l : G(z) = z ◦ f (z)

We just need to show this it is a valid ((l + 1)3, 1/10)
pseudorandom generator by using Yao’s theorem.

24/57 | Derandomization | Benjamín Benčík | February 2025

Hardness → pseudorandomness

Proof:
By Yao’s theorem It is enough to show that there is no circuit C of
size ≤ 2(l + 1)3 and i ∈ [l + 1] that could predict:

Pr
r∼G(Ul)

(C(r1, r2, . . . , ri−1) = ri) >
1
2 + ε

2(l + 1)

I For i < l , the i-th bit of G(z) is completely random by
construction thus, no circuit, regardless of size, can predict it

I For i = l + 1, boils down to computing f but the function is
n4 hard so it cannot be computed by circuit of size 2(l + 1)3

�

25/57 | Derandomization | Benjamín Benčík | February 2025

Nisan-Wigderson Construction

26/57 | Derandomization | Benjamín Benčík | February 2025

Approaches to extending

I We showed expansion one bit
I Question: How about larger expansion?

G2(z) = z1 . . . zl/2 ◦ f (z1 . . . zl/2) ◦ zl/2+1 . . . zl ◦ f (zl/2+1 . . . zl)
G3(z) = z1 . . . zl/3 ◦ f (z1 . . . zl/3) ◦ . . . ◦ f (◦z2l/3+1 . . . zl)

I By above, we do not get past linear expansion
I ...yes, we can do better, that is why we are here

27/57 | Derandomization | Benjamín Benčík | February 2025

Approaches to extending

I We showed expansion one bit
I Question: How about larger expansion?

G2(z) = z1 . . . zl/2 ◦ f (z1 . . . zl/2) ◦ zl/2+1 . . . zl ◦ f (zl/2+1 . . . zl)
G3(z) = z1 . . . zl/3 ◦ f (z1 . . . zl/3) ◦ . . . ◦ f (◦z2l/3+1 . . . zl)

I By above, we do not get past linear expansion
I ...yes, we can do better, that is why we are here

27/57 | Derandomization | Benjamín Benčík | February 2025

Larger expansions

Pick random subsets of indices, pass them through the hard
function f , and concatenate the results.

28/57 | Derandomization | Benjamín Benčík | February 2025

Construction

Definition (Nisan-Widgerson Generator)
If I = {I1, . . . , Im} is a family of subsets of [`] where each |Ij | = l
and f : {0, 1}n → {0, 1} is any function then the (I, f)-NW
generator is the function NWf

I : {0, 1}l → {0, 1}m:

∀Z ∈ {0, 1}l : NWf
I(Z) = f (ZI1) ◦ f (ZI2) ◦ . . . ◦ f (ZIm)

where ZIj = {zk : k ∈ Ij}

Vaguely we require that family of subsets is constructed in a
”reasonable way” and f is ”sufficiently hard”.

29/57 | Derandomization | Benjamín Benčík | February 2025

How to construct subsets?

Definition (Combinatorial design)
If d , n, ` ∈ N are numbers with ` > n > d then a family
I = {I1, . . . , Im} of subsets of [`] is an (`, n, d)-design if
∀j ∈ [m] : |Ij | = n and |Ij ∩ Ik | ≤ d for every j 6= k.

The above definition guarantees that the inputs to f
I have a constant size
I are pairwise dependent on at most d bits

30/57 | Derandomization | Benjamín Benčík | February 2025

Algorithm 1 Subset Construction

Input: `: seed size, d : max intersection, n: subset size
Output: (`, n, d)-design with 2d/10 sets

1: I ← ∅
2: for each n-sized set I ∈ [`] do
3: if |I| = 2d/10 then
4: return I
5: end if
6: for each j ∈ [m] do
7: if |I ∩ Ij | ≤ d then
8: I ← I ∪ {Ij}
9: break

10: end if
11: end for
12: end for

31/57 | Derandomization | Benjamín Benčík | February 2025

Construction of combinatorial design

Lemma (Construction of combinatorial design (16.18 AB))
On input `, d , n with ` > 10n2/d algorithm for Algorithm 1 will
construct a (`, d , n)-design with 2d/10 sets.

I Running time: poly(m)2` → 2O(`)

I Need to prove the greedy algorithm does not ”get stuck”
I More formally for m < 2d/10 there always exists n-sized I ⊆ [`]

which could be added into I
I We show that by picking elements from [`] into I with

uniform probability above condition is always satisfied

32/57 | Derandomization | Benjamín Benčík | February 2025

Construction of combinatorial design - Sufficient size of I

Proof:
I Add x ∈ [l] to I with probability 2n/`

I Now we calculate Pr(|I| ≥ n)
I Model |I| ∼ Bin(l , 2n/`) =⇒ E[|I|] = 2n
I By Chernoff for δ = 1/2

Pr(|I| > n) = 1− Pr(|I| ≤ n)
= 1− Pr(|I| ≤ (1− 1/2)E[|I|])
≥ 1− exp(−(δ2E[|I|])/2)
= 1− exp(−n/4)

I When I is larger than n we truncate it without damaging
properties of the design

33/57 | Derandomization | Benjamín Benčík | February 2025

Construction of combinatorial design - Sufficient Independance
I Each Ij picks elements uniformly at random,
I Therefore Pr(x ∈ Ij) = n/`

I Model ∀j ∈ m : |I ∩ Ij | ∼ Bin(`, n/`) =⇒ E[|I ∩ Ij |] = n
I By Chernoff for all j ∈ [m] and δ = d/n − 1

Pr(|I ∩ Ij | ≥ d) = Pr(|I ∩ Ij | ≥ (1− δ)E[|I ∩ Ij |])

≤ exp(−(δ2n)/3) = exp
(
−(d/n − 1)2n

3

)

≤ exp
(
−(d/n)2n

3

)

= exp
(
−d2

n3

)

34/57 | Derandomization | Benjamín Benčík | February 2025

Construction of combinatorial design - Putting it together

I Proof sets S(n) < 2n and d = log(S(n)/10)
I From above d ≤ n/10
I From statement we have m < 2d/10

I In Algorithm 1 there is not a suitable set I

Pr(@ suitable subset)
= Pr(|I| > n) · Pr(∀j [l] : |I ∩ Ij | < d)
= Pr(|I| > n) · (1− Pr(∀j [l] : |I ∩ Ij | ≥ d))|I|

≥ (1− exp(−n/4)) · (1− (exp(−d2/n3))m

≥ (1− exp(−n/4)) · (1− (exp(−n/100))2n/100

35/57 | Derandomization | Benjamín Benčík | February 2025

Construction of combinatorial design - Putting it together

According to AB ”together these two conditions imply that with
probability at least 0.4, the set I will simultaneously conditions”.
Considering this probability is good enough, we conclude proof for
the existence of combinatorial design �

36/57 | Derandomization | Benjamín Benčík | February 2025

Pseudorandomness using the NW generator

We use the combinatorial design to show the central theorem of
this lecture

Theorem (Pseudorandomness from NW generator (16.19 AB))
If I is an (l , n, d)-design with |I| = 2d/10 and f : {0, 1}n → {0, 1}
satisfying Havg(f)(n) > 2d2 , then the distribution NWf

I(Ul) is a
(Havg(f)(n)/10, 1/10)-pseudorandom distribution.

Unformally: f is a hard function and I is a design with sufficiently
large parameters, then NWf

I(Ul) is a pseudorandom distribution.

37/57 | Derandomization | Benjamín Benčík | February 2025

NW Proof Outline

1. Idea similar as proof for (l + 1)-pseudorandom generator
2. We want to prove that that for i ∈ [210/d] there does not exist

S/2 sized circuit guessing the next bit (Yao’s theorem)
3. Assume there exists such a circuit
4. Manipulate the expression and apply averaging principle
5. Arrive to contradiction about hardness of f

38/57 | Derandomization | Benjamín Benčík | February 2025

NW is PRG - Using Yao’s Theorem

For contradiction suppose there exists a circuit C and i ∈ [2d/10]
deciding random bit Ri from distribution R1, . . . Ri−1:

Pr
Z∼U`

R=NWf
I(Z)

(C(R1, R2, . . . , Ri−1) = Ri) ≥
1
2 + 1

10 · 2d/10 (2)

Assuming Equation (2) holds we use the definition of NWf
I(Z)

where Zj with Z being seeds to hard function f :

Pr
Z∼U`

(C(f (ZI1), . . . , f (ZIi−1)) = f (ZIi)) ≥
1
2 + 1

10 · 2d/10 (3)

39/57 | Derandomization | Benjamín Benčík | February 2025

NW is PRG - Splitting the Seed

I X = ZIi
I Y = Z[`]\Ii
I Bits of Z are independent X , Y are independent r.v.
I fj takes the role of combinatorial design

40/57 | Derandomization | Benjamín Benčík | February 2025

NW is PRG - Splitting seed

Based on the new notation rewrite Equation (3)

Pr
X∼U`

Y ∼U`−n

(C(f1(X , Y), . . . , fi−1(X , Y) = f (X)) ≥ 1
2 + 1

10 · 2d/10 (4)

j < i : fj(X , Y) = f (ZIj) picks parts of X , Y that are relevant to Ij
Observe Y is dependant only on Ii thus can be fixed to some string
y ∈ {0, 1}`−n

Pr
X∼Un

(C(f1(X , y), . . . , fi−1(X , y)) ≥ 1
2 + 1

10 · 2d/10 (5)

41/57 | Derandomization | Benjamín Benčík | February 2025

NW is PRG - Averaging principle

Lemma (Averaging principle)
Have event E depend on two uniform independent random
variables A ∈ Ue , B ∈ Uf :

∃b ∈ B : Pr
A

(E(A, b)) ≥ Pr
A,B

(E(A, B))

Pr
A,B

(E(A, B)) =
∑
b∈B

Pr
B

(B = b) Pr
A

(E(A, b)) (6)

Pr
A,B

(E(A, B)) = 1
|B|

∑
b∈B

Pr
A

(E(A, b)) by B ∈ Uf (7)

42/57 | Derandomization | Benjamín Benčík | February 2025

NW is PRG - Averaging principle

Joint probability is the average of PrA(E(A, b)). For contradiction:

∀b ∈ B : Pr
A

(E(A, b)) < Pr
A,B

(E(A, B))

PrA,B(E(A, B)) cannot be average �

Applying the lemma to Equation (3) there exists y ∈ {0, 1}n−`:

Pr
X∼Un

(C(f1(X , y), . . . , fi−1(X , y) = f (X)) ≥ 1
2 + 1

10 · 2d/10 (8)

43/57 | Derandomization | Benjamín Benčík | February 2025

NW is PRG - Constructing a circuit

Since i 6= j : |Ii ∩ Ij | ≤ d fj(X , y) depends on at most d coordinates
Construct a circuit D:

1. Take X ∼ Un and hard-wire y ∈ {0, 1}n−`

2. For each j < i compute fj(X , y) using small circuit of size d2d

3. Feed the results in to C to obtain f (X) = f (ZIi)
D has size i · |small circuit| + |C |
I i ≤ 2d/10

I |small circuit| ≤ d2d

I |C | = S/2 by Yao

44/57 | Derandomization | Benjamín Benčík | February 2025

NW is PRG - Constructing a circuit

Given d = log(S(n))/10

|D| ≤ 2d/10 · d2d + S/2 = d2d· 11
10 + S/2 (9)

= log(S(n))
10 S(n)

11
100 + S/2 ≤ S (10)

Pr
X∼Un

(D(X) = f (X)) ≥ 1
2 + 1

10 · 2d/10 ≥
1
2 + 1

S (11)

Since there exists a small circuit, this breaks the hardness of f , and
we get contradiction. �

45/57 | Derandomization | Benjamín Benčík | February 2025

Consequences of NW Generator

By setting parameters l > 100n2

log(S(n)) , d = log(S(n))
10 , we can show:

Theorem (Consequences of NW Generator (16.10 AB))
Given f ∈ E and every polynomial-time computable monotone
S : N→ N with Havg(f) ≥ S we can construct S(l)-pseudorandom
generator where S(ε

√
l log(S(ε

√
l)))ε for ε > 0.

Homework: If there exists f ∈ E = DTIME(2O(n)) and ε > 0
such that Havg(f) ≥ 2εn then BPP = P.

46/57 | Derandomization | Benjamín Benčík | February 2025

Consequences of NW Generator

By setting parameters l > 100n2

log(S(n)) , d = log(S(n))
10 , we can show:

Theorem (Consequences of NW Generator (16.10 AB))
Given f ∈ E and every polynomial-time computable monotone
S : N→ N with Havg(f) ≥ S we can construct S(l)-pseudorandom
generator where S(ε

√
l log(S(ε

√
l)))ε for ε > 0.

Homework: If there exists f ∈ E = DTIME(2O(n)) and ε > 0
such that Havg(f) ≥ 2εn then BPP = P.

46/57 | Derandomization | Benjamín Benčík | February 2025

Extractors

47/57 | Derandomization | Benjamín Benčík | February 2025

Motivation

I For this part suppose that we are happy with probablistic
algorithms and feel now need to derandomize them

I Sources of randomness rarely behave as perfectly uncorrelated
and unbiased coin tosses

I Application of extractors
I Running randomized algorithms using weak random sources
I Recycling random bits

48/57 | Derandomization | Benjamín Benčík | February 2025

Definition

Definition (Minimum Entropy)
Minimum entropy: of X denoted as H∞(X) is

argmaxk∈R{Pr(X = x) ≤ 2−k}

I H∞(x) ≤ n
I H∞(x) = n iff X is Un
I Our goal will be to execute probabilistic algorithms on sources

of randomness with as small H∞(X) as possible
I If H∞(x) ≥ k then it is (n, k)-source

49/57 | Derandomization | Benjamín Benčík | February 2025

Definition

Definition (Statistical distance)
Fro two variables X and Y in {0, 1}n their statistical distance is
defined as δ(X , Y) = maxS⊆{0,1}n{Pr(X ∈ S)− Pr(Y ∈ S)}

I Statistical distance quantifies the maximum difference in
probabilities that X and Y assign to any subset of S

I Small statistical distance implies that the distributions are
statistically indistinguishable

50/57 | Derandomization | Benjamín Benčík | February 2025

Definition
Definition (Extractor)
A function Ext : {0, 1}n × {0, 1}t → {0, 1}m is (k, ε) extractor
then for all X ∈ {0, 1}n with minimal entropy k

∀S ⊆ {0, 1}m :
∣∣∣∣∣ Pr
a∈X ,z∈{0,1}t

(Ext(a, z) ∈ S)− Pr
r∈{0,1}m

(r ∈ S)
∣∣∣∣∣ ≤ ε

I Extractor is given weak random source X and small seed of
size t and outputs string of m bits that is close to uniform

I The extractor ”purifies” the weak randomness of X using a
small amount of true randomness

I Intuitively, you cannot extract more randomness than what is
present in the source.

51/57 | Derandomization | Benjamín Benčík | February 2025

Deterministic extractors do not work

Lemma
For every Ext : {0, 1}n → {0, 1}m and every k ≤ n − 1 there is a
(n, k)-source such that for every x ∈ X : Ext(x) the first bit is
constant.

Proof:
I Fix a deterministic extractor Ext
I Denote S0 = {x ∈ {0, 1}n : Ext(x) has the first bit 0} and

analogously S1
I Observe either |S0| ≥ 2n−1 or |S1| ≥ 2n−1

I Assume |S0| ≥ 2n−1 and construct X ⊆ S0

52/57 | Derandomization | Benjamín Benčík | February 2025

Deterministic extractors do not work

I Let X = S0
I Evaluate H∞(X)

Pr(X = x) ≤ 2−k

1
|S0|
≤ 2−k

− log(|S0|) ≤ −k
k ≤ n − 1

�
Corollary: A deterministic extractor is at least 1/2 statistical
distance from Um; thus, it needs additional randomness.

53/57 | Derandomization | Benjamín Benčík | February 2025

Wrap-up and Applications

54/57 | Derandomization | Benjamín Benčík | February 2025

We have seen...

I What is derandomization.
I Formalization of derandomization through PRG.
I Relations between hardness and randomness.
I Combinatorial design for selecting subsets.
I Nisan-Wigderson: a PRG with exponential extension.
I Extractors and relation to derandomization.

55/57 | Derandomization | Benjamín Benčík | February 2025

Applications

I Relation of classes BPP and P
I Space-bound computation: is randomness necessary for

space-efficient computation? Hoza (2022)
I Extractors to ”purify” weak sources in cryptography
I Construction of commitment schemes in cryptography using

NW Boaz Barak, Ong, and Vadhan (2005)
I New lower bounds in circuit classes

56/57 | Derandomization | Benjamín Benčík | February 2025

References

Arora, S. and B. Barak (2006). Computational Complexity: A
Modern Approach. Cambridge University Press. isbn:
978-0-521-42426-4. url: https:
//theory.cs.princeton.edu/complexity/book.pdf.
Barak, Boaz, Shien Jin Ong, and Salil Vadhan (2005).
Derandomization in Cryptography. Cryptology ePrint Archive,
Paper 2005/365. url:
https://eprint.iacr.org/2005/365.
Hoza, William M. (2022). “Recent Progress on Derandomizing
Space-Bounded Computation”. In: Bull. EATCS 138. url:
http://eatcs.org/beatcs/index.php/beatcs/article/
view/728.

57/57 | Derandomization | Benjamín Benčík | February 2025

https://theory.cs.princeton.edu/complexity/book.pdf
https://theory.cs.princeton.edu/complexity/book.pdf
https://eprint.iacr.org/2005/365
http://eatcs.org/beatcs/index.php/beatcs/article/view/728
http://eatcs.org/beatcs/index.php/beatcs/article/view/728

	Overview
	Pseudo-random generators
	Computational Hardness
	Nisan-Wigderson Construction
	Extractors
	Wrap-up and Applications
	References

