イロト イヨト イヨト イヨト

æ

Derandomization

Based on Arora and B. Barak (2006)

Benjamín Benčík

Seminar: Advanced Complexity Theory

March 20, 2025

• • = • • = •

Table of contents

Overview

Pseudo-random generators

Computational Hardness

Nisan-Wigderson Construction

Extractors

Wrap-up and Applications

メロト メポト メヨト メヨト

æ

What is derandomization?

.

What is derandomization?

Definition (Definition BPP Class)

Let $L \subseteq \{0,1\}^*$ be a language. We say that L is in **BPP** if there is a poly-time **PTM** M such that for all $x \in \{0,1\}^*$

$$x \in L \implies \Pr(M(x) = 1) \ge \frac{2}{3} \text{ and } x \notin L \implies \Pr(M(x) = 0) \ge \frac{2}{3}$$

- Derandomization is process $\mathbf{BPP} \rightarrow \mathbf{P}$
- **It is not known BPP** $\stackrel{?}{=}$ **P**
- At least P ⊂ BBP holds trivially

Why do we care?

Derandomization gives insight into questions:

- What is the difference between problems that are randomized and deterministic?
- How can we use an imperfect source of randomness to achieve an almost perfect source?
- How much true randomness algorithm is neededs?

How to approach derandomization?

Common techniques of derandomization:

- 1. **Maximization of considional expectation** replace random choices with deterministic ones by iteratively fixing decisions to maximize expected value
- 2. Use pseudorandom generators replace perfect randomness with pseudorandom-randomness generated using a small seed
- 3. **Limited Independence** Instead of fully independent random variables use *k*-wise independent

In this lecture we will focus on pseudorandom generators.

メロト メポト メヨト メヨト

æ

Pseudo-random generators

Pseudorandom Distribution

Definition (Pseudorandom Distribution (PD))

Let *R* be a distribution over $\{0,1\}^m$, $S \in \mathbb{N}$, $\epsilon > 0$. We say that *R* is (S, ϵ) -pseudorandom distribution if for every circuit *C* of size at most *S*:

$$\Pr_{x \sim R}(C(x) = 1) - \Pr_{x \sim U_m}(C(x) = 1)| < \epsilon$$

Defined in terms of maximum advantage ϵ a circuit of size S can get when distinguishing R from uniform distribution.

Pseudorandom Distribution

Pseudorandom Generator

Definition (Pseudorandom generator PG)

If $S : \mathbb{N} \to \mathbb{N}$ is a poly-time computable monotone function then a function $G : \{0,1\}^* \to \{0,1\}^*$ with input z (seed) is called $S(\ell)$ -pseudorandom generator if $\forall z \in \{0,1\}^{\ell}$

$$|G(z)| = S(l)$$

•
$$G(z)$$
 can be computed in time $2^{c\ell}$ for a constant c

▶
$$\forall \ell \in \mathbb{N} : G(U_\ell)$$
 is an $\left(S(I)^3, \frac{1}{10}\right)$ -pseudorandom distribution

Maps a seed $z \in \{0,1\}^{\ell}$ to a longer output $G(z) \in \{0,1\}^m$ that is indistinguishable from uniform distribution by and small circuit C

æ

Pseudorandom Generator

.

Pseudorandom Generator

- The definition allows the pseudorandom generator to run in exponential time with respect to the seed size.
- Question: What can possible PRG distinguisher use to its advantage?

Pseudorandom Generator

- The definition allows the pseudorandom generator to run in exponential time with respect to the seed size.
- Question: What can possible PRG distinguisher use to its advantage?
 - Are any bits biased towards certain values?
 - Is any pair of indices correlated?
 - How frequent are characters in a string?

伺 ト イ ヨ ト イ ヨ ト

Pseudorandom Generator

- The definition allows the pseudorandom generator to run in exponential time with respect to the seed size.
- Question: What can possible PRG distinguisher use to its advantage?
 - Are any bits biased towards certain values?
 - Is any pair of indices correlated?
 - How frequent are characters in a string?

Homework: Consider $h(z) = \left(\sum_{i=0}^{l} z_i\right) \mod 2$ is $G(z) = z \circ h(z)$ valid (l + 1)-pseudorandom generator? Give a proof for your answer.

BPP vs P

Lemma (BPP vs P)

If there is a $2^{\epsilon l}$ -pseudorandom generator for $\epsilon > 0$ then **BPP** = **P**.

If $L \in \mathbf{BPP}$ then by definition there exists an algorithm PTM M(x, r) that uses random bits $r = \{0, 1\}^{poly(|x|)}$ and has correctness and soundness 2/3.

Idea: instead of using truly random bits, use PRG over all possible seeds.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

BPP vs P

Proof sketch:

- ▶ Let $G: \{0,1\}^{\ell} \to \{0,1\}^{S(\ell)}$ where $S(\ell) = 2^{\epsilon \ell}$ for $\epsilon > 0$
- PTM M can use at most poly(|x|) randomness
- Use G to simulate randomness of PTM M on $I = \log(|x|)$
 - 1. For each seed $z \in \{0,1\}^{\ell}$ compute $G(s) \in \{0,1\}^{2^{\epsilon\ell}}$
 - 2. Run M(x, G(z)) and record the output
 - 3. Output the majority result over all runs
- The number of possible seeds is $2^{l} = 2^{\log(|x|)} = |x|$
- Argue that correctness and soundness is maintained

イロト イヨト イヨト イヨト

æ

Computational Hardness

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Hardness

Definition (Average-case Hardness)

The average-case hardness of f denoted $H_{avg}(f) : \mathbb{N} \to \mathbb{N}$ maps every $n \in \mathbb{N}$ to largest number S such that for every boolean circuit C on n inputs and size $\leq S$ holds

$$\Pr_{x \sim \{0,1\}^n}(C(x) = f(x)) \le \frac{1}{2} + \frac{1}{|S|}$$

A function g is hard to compute if no "small" circuit can do much better at computing the function than guessing.

Claim: There exists a function that has an exponential average-case hardness.

Hardness

Definition (Worst-case Hardness)

Let $f : \{0,1\}^* \to \{0,1\}$, the *worst-case hardness* of f denoted $H_{wrs}(f) : \mathbb{N} \to \mathbb{N}$ maps $n \in \mathbb{N}$ to the largest number S such that every boolean circuit of size $\leq S$ fails to compute f on input $\{0,1\}^n$.

Worst-case hardness is weaker than average-case hardness.

留 と く き と く き とう

Hardness

Definition (Worst-case Hardness)

Let $f : \{0,1\}^* \to \{0,1\}$, the *worst-case hardness* of f denoted $H_{wrs}(f) : \mathbb{N} \to \mathbb{N}$ maps $n \in \mathbb{N}$ to the largest number S such that every boolean circuit of size $\leq S$ fails to compute f on input $\{0,1\}^n$.

Worst-case hardness is weaker than average-case hardness.

Homework: Show the construction of a function that has exponential worst-case hardness.

(本部) (* 문) (* 문) (* 문)

$\mathsf{Pseudorandomness} \to \mathsf{Hardness}$

Lemma (Pseudorandomness implies harndess)

Let $G : \{0,1\}^{\ell} \to \{0,1\}^{\ell+1}$ be a $S(\ell)$ -pseudorandom generator. Let $T = \{G(z) : z \in \{0,1\}^{\ell}\}$ and define $f : \{0,1\}^{n+1} \to \{0,1\}$ as f(x) = 1 if $x \in T$ and 0 otherwise. The function f is $S(\ell)$ -hard

To show validity of the construction assume that f is not hard and arrive to contradiction that S(I) is not pseudorandom. **Proof:**

- If f is not hard there exists C computing it
- ▶ Number of possible seeds is at most $2^{\ell} \implies |T| \le 2^n$
- C can accept in at most 1/2 cases

$$\Pr_{x \sim U_{n+1}}(C(x) = 1) \le \frac{2^n}{2^{n+1}} = \frac{1}{2}$$

$\mathsf{Pseudorandomness} \to \mathsf{Hardness}$

First Trivially $\Pr_{x \sim U_{n+1}}(C(G(x)) = 1) = 1$

The distinguishing advantage is too high

$$\left|\Pr_{x \sim Un}[C(G(x)) = 1] - \Pr_{x \sim U_{n+1}}[C(x) = 1]\right| \ge 1 - \frac{1}{2} = \frac{1}{2}$$

There is a small C that can distinguish distribution generated by G from U_{n+1} , therefore G cannot be a PRG

$\mathsf{Hardness} \to \mathsf{pseudorandomness} \text{ - } \mathsf{Yao's \ Theorem}$

Yao's Theorem (16.14, AB)

Let Y be a dirtribution over $\{0,1\}^m$. Suppose there exists $S \ge 10n, \epsilon > 0$ such that for every circuit C of size $\le 2S$ and $i \in [m]$

$$\Pr_{z \sim Y}(C(z_1, z_2, \dots, z_{i-1}) = z_i) \leq \frac{1}{2} + \frac{\epsilon}{m}$$

The Y is (S, ϵ) -pseudorandom distribution.

If no small circuit can predict the next output of distribution Y, then the distribution is pseudorandom.

イロト イヨト イヨト イヨト

æ

 $\mathsf{Hardness} \to \mathsf{pseudorandomness} \text{ - } \mathsf{Yao's \ Theorem}$

$\mathsf{Hardness} \to \mathsf{pseudorandomness} \text{ - } \mathsf{Yao's \ Theorem}$

Proof of Yao's theorem:

Suppose the Y is is not (S, ϵ) -pseudorandom, then there exists D

$$|D| < S \land |\Pr_{r \sim Y}(D(r) = 1) - \Pr_{r \sim U}(D(r) = 1)| > \epsilon$$
(1)

Construct *m* distributions H_1, H_2, \ldots, H_m :

$$H_i = \begin{cases} r \sim U_m & i = 1\\ r \sim Y & i = m\\ (r1, \dots, r_i) \sim Y \circ (r_{i+1}, \dots, r_m) \sim U_{m-i} & 0 < i < m \end{cases}$$

$\mathsf{Hardness} \to \mathsf{pseudorandomness} \text{ - } \mathsf{Yao's \ Theorem}$

Split the total distinguishing advantage into sum of distinguishing advantages for each position:

$$|\Pr_{r \sim Y}(D(r)=1) - \Pr_{r \sim U}(D(r)=1)| = \sum_{i=1}^{m} |\Pr_{r \sim Y}(D(H_i)=1) - \Pr_{r \sim U}(D(H_{i-1})=1)|$$

Since the overall difference is at least ϵ , there must be *i* such that

$$|\Pr_{r\sim Y}(D(H_i)=1) - \Pr_{r\sim U}(D(H_{i-1})=1)| \geq rac{\epsilon}{m}$$

Distinguisher C can be constructed by combining $D(H_i), D(H_{i-1})$ and resulting circuit has size $\leq 2S$ which implies contradiction

$$\Pr_{z \sim Y}(C(z_1, z_2, \dots, z_{i-1}) = z_i) \geq \frac{1}{2} + \frac{\epsilon}{m}$$

$\mathsf{Hardness} \to \mathsf{pseudorandomness}$

Lemma (Pseudorandomness from hardness (16.13, AB)) Suppose there is $f \in \mathbf{E}$ with $H_{avg}(f) \ge n^4$. Then there is a S(I)-pseudorandom generator for which S(I) = I + 1

The construction of generator is $\forall z \in \{0,1\}^I : G(z) = z \circ f(z)$

We just need to show this it is a valid $((l+1)^3, 1/10)$ pseudorandom generator by using Yao's theorem.

$\mathsf{Hardness} \to \mathsf{pseudorandomness}$

Proof:

By Yao's theorem It is enough to show that there is no circuit C of size $\leq 2(l+1)^3$ and $i \in [l+1]$ that could predict:

$$\Pr_{r \sim G(U_l)}(C(r_1, r_2, \dots, r_{i-1}) = r_i) > \frac{1}{2} + \frac{\epsilon}{2(l+1)}$$

- For i < l, the i-th bit of G(z) is completely random by construction thus, no circuit, regardless of size, can predict it
- For i = l + 1, boils down to computing f but the function is n⁴ hard so it cannot be computed by circuit of size 2(l + 1)³

イロト イヨト イヨト イヨト

æ

Nisan-Wigderson Construction

Approaches to extending

We showed expansion one bit

Question: How about larger expansion?

Approaches to extending

We showed expansion one bit

Question: How about larger expansion?

$$G_{2}(z) = z_{1} \dots z_{l/2} \circ f(z_{1} \dots z_{l/2}) \circ z_{l/2+1} \dots z_{l} \circ f(z_{l/2+1} \dots z_{l})$$

$$G_{3}(z) = z_{1} \dots z_{l/3} \circ f(z_{1} \dots z_{l/3}) \circ \dots \circ f(\circ z_{2l/3+1} \dots z_{l})$$

By above, we do not get past linear expansion...yes, we can do better, that is why we are here

Larger expansions

Pick random subsets of indices, pass them through the hard function f, and concatenate the results.

Construction

Definition (Nisan-Widgerson Generator)

If $\mathcal{I} = \{I_1, \ldots, I_m\}$ is a family of subsets of $[\ell]$ where each $|I_j| = I$ and $f : \{0, 1\}^n \to \{0, 1\}$ is any function then the (\mathcal{I}, f) -NW generator is the function $\mathsf{NW}_{\mathcal{I}}^f : \{0, 1\}^I \to \{0, 1\}^m$:

$$\forall Z \in \{0,1\}^{I} : \mathsf{NW}_{\mathcal{I}}^{f}(Z) = f(Z_{I_{1}}) \circ f(Z_{I_{2}}) \circ \ldots \circ f(Z_{I_{m}})$$

where $Z_{I_j} = \{z_k : k \in I_j\}$

Vaguely we require that family of subsets is constructed in a *"reasonable way"* and *f* is *"sufficiently hard"*.

How to construct subsets?

Definition (Combinatorial design)

If $d, n, \ell \in \mathbb{N}$ are numbers with $\ell > n > d$ then a family $\mathcal{I} = \{I_1, \ldots, I_m\}$ of subsets of $[\ell]$ is an (ℓ, n, d) -design if $\forall j \in [m] : |I_j| = n$ and $|I_j \cap I_k| \le d$ for every $j \ne k$.

The above definition guarantees that the inputs to \boldsymbol{f}

- have a constant size
- are pairwise dependent on at most d bits

イロト イヨト イヨト

э

Algorithm 1 Subset Construction

```
Input: \ell: seed size, d: max intersection, n: subset size
Output: (\ell, n, d)-design with 2^{d/10} sets
 1: \mathcal{I} \leftarrow \emptyset
 2: for each n-sized set I \in [\ell] do
          if |\mathcal{I}| = 2^{d/10} then
 3:
               return \mathcal{I}
 4.
 5:
          end if
          for each j \in [m] do
 6:
               if |I \cap I_i| \leq d then
 7:
                    \mathcal{I} \leftarrow \mathcal{I} \cup \{I_i\}
 8:
                    break
 9.
               end if
10:
          end for
11.
12: end for
```

<ロト <四ト <三ト < 三ト < 三ト 三 三

Construction of combinatorial design

Lemma (Construction of combinatorial design (16.18 AB))

On input ℓ , d, n with $\ell > 10n^2/d$ algorithm for Algorithm 1 will construct a (ℓ, d, n) -design with $2^{d/10}$ sets.

- Running time: $poly(m)2^{\ell} \rightarrow 2^{\mathcal{O}(\ell)}$
- Need to prove the greedy algorithm does not "get stuck"
- More formally for m < 2^{d/10} there always exists n-sized I ⊆ [ℓ] which could be added into I
- We show that by picking elements from [l] into I with uniform probability above condition is always satisfied

Construction of combinatorial design - Sufficient size of I

Proof:

- Add $x \in [I]$ to I with probability $2n/\ell$
- Now we calculate $Pr(|I| \ge n)$
- ► Model $|I| \sim Bin(I, 2n/\ell) \implies \mathbb{E}[|I|] = 2n$
- ▶ By Chernoff for $\delta = 1/2$

$$\begin{aligned} \mathsf{Pr}(|I| > n) &= 1 - \mathsf{Pr}(|I| \le n) \\ &= 1 - \mathsf{Pr}(|I| \le (1 - 1/2)\mathbb{E}[|I|]) \\ &\ge 1 - \exp(-(\delta^2 \mathbb{E}[|I|])/2) \\ &= 1 - \exp(-n/4) \end{aligned}$$

When I is larger than n we truncate it without damaging properties of the design

イロト イヨト イヨト --

æ

Construction of combinatorial design - Sufficient Independance

- Each I_j picks elements uniformly at random,
- Therefore $\Pr(x \in I_j) = n/\ell$

Ρ

- ▶ Model $\forall j \in m : |I \cap I_j| \sim Bin(\ell, n/\ell) \implies \mathbb{E}[|I \cap I_j|] = n$
- ▶ By Chernoff for all $j \in [m]$ and $\delta = d/n 1$

$$\begin{aligned} \Pr(|I \cap I_j| \ge d) &= \Pr(|I \cap I_j| \ge (1 - \delta)\mathbb{E}[|I \cap I_j|]) \\ &\le \exp(-(\delta^2 n)/3) = \exp\left(-\frac{(d/n - 1)^2 n}{3}\right) \\ &\le \exp\left(-\frac{(d/n)^2 n}{3}\right) \\ &= \exp\left(-\frac{d^2}{n3}\right) \end{aligned}$$

(日)

æ

Construction of combinatorial design - Putting it together

- ▶ Proof sets $S(n) < 2^n$ and $d = \log(S(n)/10)$
- From above $d \le n/10$
- From statement we have $m < 2^{d/10}$
- $\blacktriangleright\,$ In Algorithm 1 there is not a suitable set ${\cal I}$

$$\begin{aligned} & \mathsf{Pr}(\nexists \text{ suitable subset }) \\ &= \mathsf{Pr}(|I| > n) \cdot \mathsf{Pr}(\forall j \ [I] : |I \cap I_j| < d) \\ &= \mathsf{Pr}(|I| > n) \cdot (1 - \mathsf{Pr}(\forall j \ [I] : |I \cap I_j| \ge d))^{|\mathcal{I}|} \\ &\ge (1 - \exp(-n/4)) \cdot (1 - (\exp(-d^2/n^3))^m) \\ &\ge (1 - \exp(-n/4)) \cdot (1 - (\exp(-n/100))^{2^{n/100}}) \end{aligned}$$

Construction of combinatorial design - Putting it together

According to AB "together these two conditions imply that with probability at least 0.4, the set I will simultaneously conditions". Considering this probability is good enough, we conclude proof for the existence of combinatorial design \Box

Pseudorandomness using the NW generator

We use the combinatorial design to show the central theorem of this lecture

Theorem (Pseudorandomness from NW generator (16.19 AB)) If \mathcal{I} is an (I, n, d)-design with $|\mathcal{I}| = 2^{d/10}$ and $f : \{0, 1\}^n \to \{0, 1\}$ satisfying $H_{avg}(f)(n) > 2^{d^2}$, then the distribution $NW_{\mathcal{I}}^f(U_l)$ is a $(H_{avg}(f)(n)/10, 1/10)$ -pseudorandom distribution.

Unformally: f is a hard function and \mathcal{I} is a design with sufficiently large parameters, then $NW_{\mathcal{I}}^{f}(U_{l})$ is a pseudorandom distribution.

NW Proof Outline

- 1. Idea similar as proof for (l + 1)-pseudorandom generator
- 2. We want to prove that that for $i \in [2^{10/d}]$ there does not exist S/2 sized circuit guessing the next bit (Yao's theorem)
- 3. Assume there exists such a circuit
- 4. Manipulate the expression and apply averaging principle
- 5. Arrive to contradiction about hardness of f

NW is PRG - Using Yao's Theorem

For contradiction suppose there exists a circuit C and $i \in [2^{d/10}]$ deciding random bit R_i from distribution $R_1, \ldots R_{i-1}$:

$$\Pr_{\substack{Z \sim U_{\ell} \\ R = \mathsf{NW}_{\mathbb{I}}^{\ell}(Z)}} \left(C(R_1, R_2, \dots, R_{i-1}) = R_i \right) \ge \frac{1}{2} + \frac{1}{10 \cdot 2^{d/10}}$$
(2)

Assuming Equation (2) holds we use the definition of $NW_{\mathcal{I}}^{f}(Z)$ where Z_{j} with Z being seeds to hard function f:

$$\Pr_{Z \sim U_{\ell}}(C(f(Z_{I_1}), \dots, f(Z_{I_{i-1}})) = f(Z_{I_i})) \ge \frac{1}{2} + \frac{1}{10 \cdot 2^{d/10}}$$
(3)

NW is PRG - Splitting the Seed

$$\blacktriangleright X = Z_{I_i}$$

- $\triangleright Y = Z_{[\ell] \setminus I_i}$
- Bits of Z are independent X, Y are independent r.v.
- *f_j* takes the role of combinatorial design

NW is PRG - Splitting seed

Based on the new notation rewrite Equation (3)

$$\Pr_{\substack{X \sim U_{\ell} \\ Y \sim U_{\ell-n}}} \left(C(f_1(X,Y), \dots, f_{i-1}(X,Y) = f(X)) \ge \frac{1}{2} + \frac{1}{10 \cdot 2^{d/10}} \right)$$
(4)

 $j < i : f_j(X, Y) = f(Z_{l_j})$ picks parts of X, Y that are relevant to l_j Observe Y is dependent only on l_i thus can be fixed to some string $y \in \{0, 1\}^{\ell-n}$

$$\Pr_{X \sim U_n}(C(f_1(X, y), \dots, f_{i-1}(X, y)) \ge \frac{1}{2} + \frac{1}{10 \cdot 2^{d/10}}$$
(5)

NW is PRG - Averaging principle

Lemma (Averaging principle)

Have event E depend on two uniform independent random variables $A \in U_e, B \in U_f$:

$$\exists b \in B : \Pr_A(E(A,b)) \geq \Pr_{A,B}(E(A,B))$$

$$\Pr_{A,B}(E(A,B)) = \sum_{b \in B} \Pr_{B}(B=b) \Pr_{A}(E(A,b))$$
(6)

$$\Pr_{A,B}(E(A,B)) = \frac{1}{|B|} \sum_{b \in B} \Pr_A(E(A,b)) \text{ by } B \in U_f$$
(7)

NW is PRG - Averaging principle

Joint probability is the average of $Pr_A(E(A, b))$. For contradiction:

$$\forall b \in B : \Pr_A(E(A, b)) < \Pr_{A,B}(E(A, B))$$

 $Pr_{A,B}(E(A, B))$ cannot be average □ Applying the lemma to Equation (3) there exists $y \in \{0,1\}^{n-\ell}$:

$$\Pr_{X \sim U_n}(C(f_1(X, y), \dots, f_{i-1}(X, y) = f(X)) \ge \frac{1}{2} + \frac{1}{10 \cdot 2^{d/10}}$$
(8)

・同ト・ヨト・ヨト ヨークQへ

NW is PRG - Constructing a circuit

Since $i \neq j$: $|I_i \cap I_j| \leq d f_j(X, y)$ depends on at most d coordinates Construct a circuit D:

- 1. Take $X \sim U_n$ and hard-wire $y \in \{0,1\}^{n-\ell}$
- 2. For each j < i compute $f_j(X, y)$ using small circuit of size $d2^d$
- 3. Feed the results in to C to obtain $f(X) = f(Z_{I_i})$

D has size $i \cdot |\text{small circuit}| + |C|$

- ▶ $|\text{small circuit}| \leq d2^d$
- ► |C| = S/2 by Yao

《曰》《卽》《臣》《臣》

NW is PRG - Constructing a circuit

Given
$$d = \log(S(n))/10$$

 $|D| \le 2^{d/10} \cdot d2^d + S/2 = d2^{d \cdot \frac{11}{10}} + S/2$ (9)
 $= \frac{\log(S(n))}{10} S(n)^{\frac{11}{100}} + S/2 \le S$ (10)

$$\Pr_{X \sim U_n}(D(X) = f(X)) \ge \frac{1}{2} + \frac{1}{10 \cdot 2^{d/10}} \ge \frac{1}{2} + \frac{1}{5}$$
(11)

Since there exists a small circuit, this breaks the hardness of f, and we get contradiction. \Box

Consequences of NW Generator

By setting parameters $l > \frac{100n^2}{\log(S(n))}, d = \frac{\log(S(n))}{10}$, we can show:

Theorem (Consequences of NW Generator (16.10 AB))

Given $f \in \mathbf{E}$ and every polynomial-time computable monotone $S : \mathbb{N} \to \mathbb{N}$ with $H_{avg}(f) \ge S$ we can construct S(I)-pseudorandom generator where $S(\epsilon \sqrt{I} \log(S(\epsilon \sqrt{I})))^{\epsilon}$ for $\epsilon > 0$.

(4回) (4回) (4回)

Consequences of NW Generator

By setting parameters $l > \frac{100n^2}{\log(S(n))}, d = \frac{\log(S(n))}{10}$, we can show:

Theorem (Consequences of NW Generator (16.10 AB))

Given $f \in \mathbf{E}$ and every polynomial-time computable monotone $S : \mathbb{N} \to \mathbb{N}$ with $H_{avg}(f) \ge S$ we can construct S(I)-pseudorandom generator where $S(\epsilon \sqrt{I} \log(S(\epsilon \sqrt{I})))^{\epsilon}$ for $\epsilon > 0$.

Homework: If there exists $f \in \mathbf{E} = \mathsf{DTIME}(2^{\mathcal{O}(n)})$ and $\epsilon > 0$ such that $\mathsf{H}_{\mathsf{avg}}(f) \ge 2^{\epsilon n}$ then $\mathsf{BPP} = \mathsf{P}$.

イロト イヨト イヨト イヨト

æ

Extractors

47/57 | Derandomization | Benjamín Benčík | February 2025

.

Motivation

- For this part suppose that we are happy with probablistic algorithms and feel now need to derandomize them
- Sources of randomness rarely behave as perfectly uncorrelated and unbiased coin tosses
- Application of extractors
 - Running randomized algorithms using weak random sources
 - Recycling random bits

- 4 目 ト - 4 日 ト

Definition

Definition (Minimum Entropy)

Minimum entropy: of X denoted as $H_{\infty}(X)$ is

$$\operatorname{argmax}_{k\in\mathbb{R}}\{\Pr(X=x)\leq 2^{-k}\}$$

•
$$H_{\infty}(x) \leq n$$

$$\blacktriangleright H_{\infty}(x) = n \text{ iff } X \text{ is } U_n$$

• Our goal will be to execute probabilistic algorithms on sources of randomness with as small $H_{\infty}(X)$ as possible

• If
$$H_{\infty}(x) \ge k$$
 then it is (n, k) -source

Definition

Definition (Statistical distance)

Fro two variables X and Y in $\{0,1\}^n$ their statistical distance is defined as $\delta(X, Y) = \max_{S \subseteq \{0,1\}^n} \{\Pr(X \in S) - \Pr(Y \in S)\}$

- Statistical distance quantifies the maximum difference in probabilities that X and Y assign to any subset of S
- Small statistical distance implies that the distributions are statistically indistinguishable

Definition

Definition (Extractor)

A function Ext : $\{0,1\}^n \times \{0,1\}^t \to \{0,1\}^m$ is (k,ϵ) extractor then for all $X \in \{0,1\}^n$ with minimal entropy k

$$\forall S \subseteq \{0,1\}^m : \left| \Pr_{a \in X, z \in \{0,1\}^t} (\mathsf{Ext}(a,z) \in S) - \Pr_{r \in \{0,1\}^m} (r \in S) \right| \le \epsilon$$

- Extractor is given weak random source X and small seed of size t and outputs string of m bits that is close to uniform
- The extractor "purifies" the weak randomness of X using a small amount of true randomness
- Intuitively, you cannot extract more randomness than what is present in the source.

Deterministic extractors do not work

Lemma

For every $\text{Ext} : \{0,1\}^n \to \{0,1\}^m$ and every $k \le n-1$ there is a (n,k)-source such that for every $x \in X : \text{Ext}(x)$ the first bit is constant.

Proof:

- Fix a deterministic extractor Ext
- ▶ Denote $S_0 = \{x \in \{0,1\}^n : Ext(x) \text{ has the first bit } 0\}$ and analogously S_1
- Observe either $|S_0| \ge 2^{n-1}$ or $|S_1| \ge 2^{n-1}$

▶ Assume
$$|S_0| \ge 2^{n-1}$$
 and construct $X \subseteq S_0$

Deterministic extractors do not work

$$\begin{aligned} \mathsf{Pr}(X = x) &\leq 2^{-k} \\ \frac{1}{|\mathcal{S}_0|} &\leq 2^{-k} \\ -\log(|\mathcal{S}_0|) &\leq -k \\ k &\leq n-1 \end{aligned}$$

Corollary: A deterministic extractor is at least 1/2 statistical distance from U_m ; thus, it needs additional randomness.

イロト イヨト イヨト イヨト

æ

Wrap-up and Applications

We have seen...

- What is derandomization.
- ► Formalization of derandomization through PRG.
- Relations between hardness and randomness.
- Combinatorial design for selecting subsets.
- ▶ Nisan-Wigderson: a PRG with exponential extension.
- Extractors and relation to derandomization.

Applications

- Relation of classes BPP and P
- Space-bound computation: is randomness necessary for space-efficient computation? Hoza (2022)
- Extractors to "purify" weak sources in cryptography
- Construction of commitment schemes in cryptography using NW Boaz Barak, Ong, and Vadhan (2005)
- New lower bounds in circuit classes

< ロト < 伺 ト < 三 ト < 三 ト

References

Arora, S. and B. Barak (2006). Computational Complexity: A Modern Approach. Cambridge University Press. ISBN: 978-0-521-42426-4. URL: https: //theory.cs.princeton.edu/complexity/book.pdf. Barak, Boaz, Shien Jin Ong, and Salil Vadhan (2005). Derandomization in Cryptography. Cryptology ePrint Archive, Paper 2005/365. URL: https://eprint.iacr.org/2005/365. Hoza, William M. (2022). "Recent Progress on Derandomizing" Space-Bounded Computation". In: Bull. EATCS 138. URL: http://eatcs.org/beatcs/index.php/beatcs/article/ view/728.